Quantifying uncertainty in multivariate quantile estimation of hydrometeorological extremes via copula: A comparison between bootstrapping and Markov chain Monte Carlo

分位数 单变量 二元分析 自举(财务) 连接词(语言学) 统计 水文气象 马尔科夫蒙特卡洛 计量经济学 多元统计 数学 蒙特卡罗方法 地理 降水 气象学
作者
Pan Yang,Tze Ling Ng
出处
期刊:International Journal of Climatology [Wiley]
卷期号:42 (9): 4621-4638 被引量:1
标识
DOI:10.1002/joc.7493
摘要

Abstract The performance of uncertainty estimation methods, namely bootstrapping and Markov chain Monte Carlo (MCMC), in univariate frequency analysis of hydrometeorological extremes has been well tested in the literature. However, the two methods have not been thoroughly compared for multivariate frequency analysis of such events. In this study, we compare the performance of bootstrapping and MCMC in estimating the uncertainty of bivariate quantiles of extremes as defined by the return period quantiles of hydrologic drought duration and severity, and concurrent meteorological drought and heat wave. Using a copula framework, we analyse the accuracy and size of confidence intervals of the bivariate quantiles, and bias in point estimates of them. We also investigate the performance of the two methods in estimating the uncertainty of univariate quantiles of the marginal distributions of the resulting bivariate copulas. This is to evaluate if any advantage of one method over the other is consistent, whether in estimating the univariate or bivariate quantiles. We conduct this study with synthetic datasets of various sample sizes and predefined distributions derived from a set of empirical data. The results show MCMC to be superior when estimating the uncertainty of bivariate quantiles where the sample size is small (~50). Where the sample size is large (~100 and ~200), the results show bootstrapping to be the better option for estimating uncertainties of bivariate quantiles. For estimating uncertainties of univariate quantiles, bootstrapping is performing better under all investigated sample sizes. Results and conclusions in this study will be beneficial for hydrometeorological risk assessment, hydrologic infrastructure design, and water resources assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萝卜完成签到,获得积分10
1秒前
2秒前
愉快天亦完成签到,获得积分10
2秒前
大模型应助111采纳,获得50
2秒前
jackten完成签到,获得积分10
2秒前
研友_VZG7GZ应助czz采纳,获得10
3秒前
海的呼唤发布了新的文献求助10
4秒前
幽默茈发布了新的文献求助10
4秒前
搜集达人应助清风明月采纳,获得10
4秒前
5秒前
SYLH应助wodeqiche2007采纳,获得10
6秒前
LUAN发布了新的文献求助10
9秒前
10秒前
11秒前
xiaodong完成签到,获得积分10
12秒前
文艺鞋子完成签到 ,获得积分10
12秒前
14秒前
Xuxiongbin完成签到 ,获得积分10
15秒前
16秒前
jennifer完成签到,获得积分10
16秒前
111发布了新的文献求助50
16秒前
16秒前
wild完成签到,获得积分10
17秒前
秋梧发布了新的文献求助10
17秒前
一指墨完成签到,获得积分10
19秒前
快乐茗发布了新的文献求助10
19秒前
LiJie完成签到 ,获得积分10
19秒前
DAVE给哈桑士的求助进行了留言
20秒前
李富贵发布了新的文献求助10
21秒前
大气蝴蝶关注了科研通微信公众号
24秒前
小夏完成签到,获得积分10
25秒前
小聪完成签到 ,获得积分10
25秒前
秋梧完成签到,获得积分10
26秒前
科研通AI5应助李富贵采纳,获得10
26秒前
乐乐应助关键词采纳,获得10
26秒前
滕皓轩发布了新的文献求助10
27秒前
28秒前
29秒前
斯文败类应助科研通管家采纳,获得20
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797638
求助须知:如何正确求助?哪些是违规求助? 3343077
关于积分的说明 10314637
捐赠科研通 3059803
什么是DOI,文献DOI怎么找? 1679098
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763102