已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel

材料科学 方向错误 微观结构 成核 位错 细胞结构 复合材料 退火(玻璃) 电子背散射衍射 体积分数 结晶学 晶界 化学 有机化学 生物系统 生物
作者
Luqing Cui,Dunyong Deng,Fuqing Jiang,Ru Lin Peng,Tongzheng Xin,R. Taherzadeh Mousavian,Zhiqing Yang,Johan Moverare
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:111: 268-278 被引量:44
标识
DOI:10.1016/j.jmst.2021.10.006
摘要

We have investigated the low cycle fatigue (LCF) properties and the extent of strengthening in a dense additively manufactured stainless steel containing different volume fractions of cell structures but having all other microstructure characteristics the same. The samples were produced by laser powder bed fusion (L-PBF), and the concentration of cell structures was varied systematically by varying the annealing treatments. Load-controlled fatigue experiments performed on samples with a high fraction of cell structures reveal an up to 23 times increase in fatigue life compared to an essentially cell-free sample of the same grain configuration. Multiscale electron microscopy characterizations reveal that the cell structures serve as the soft barriers to the dislocation propagation and the partials are the main carrier for cyclic loading. The cell structures, stabilized by the segregated atoms and misorientation between the adjacent cells, are retained during the entire plastic deformation, hence, can continuously interact with dislocations, promote the formation of nanotwins, and provide massive 3D network obstacles to the dislocation motion. The compositional micro-segregation caused by the cellular solidification features serves as another non-negligible strengthening mechanism to dislocation motion. Specifically, the cell structures with a high density of dislocation debris also appear to act as dislocation nucleation sites, very much like coherent twin boundaries. This work indicates the potential of additive manufacturing to design energy absorbent alloys with high performance by tailoring the microstructure through the printing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴DrYDYY发布了新的文献求助10
刚刚
2秒前
6秒前
ZhaoY完成签到,获得积分10
6秒前
深情安青应助WZQ采纳,获得10
6秒前
GZ发布了新的文献求助10
6秒前
斯文败类应助小蓝人采纳,获得10
7秒前
唯爱林发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
hyhyhyhy发布了新的文献求助10
11秒前
11秒前
吴DrYDYY完成签到,获得积分10
11秒前
12秒前
13秒前
15秒前
zyw发布了新的文献求助10
16秒前
GZ发布了新的文献求助10
16秒前
Cherish完成签到,获得积分10
17秒前
向阳而生o完成签到,获得积分10
17秒前
yanlulu完成签到 ,获得积分10
18秒前
yekindar应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
yekindar应助科研通管家采纳,获得10
19秒前
kingwill应助营养都在汤里采纳,获得20
19秒前
PKU_Harzen应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
20秒前
吉吉发布了新的文献求助10
21秒前
Hello应助GZ采纳,获得10
21秒前
北斋应助逐风采纳,获得10
22秒前
YJ发布了新的文献求助10
24秒前
happy完成签到 ,获得积分10
25秒前
彭于晏应助坦率的尔冬采纳,获得10
25秒前
科研通AI2S应助秋qiu采纳,获得10
26秒前
树123发布了新的文献求助10
26秒前
秋qiu完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4441860
求助须知:如何正确求助?哪些是违规求助? 3913282
关于积分的说明 12152925
捐赠科研通 3560967
什么是DOI,文献DOI怎么找? 1954849
邀请新用户注册赠送积分活动 994591
科研通“疑难数据库(出版商)”最低求助积分说明 889905