亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

XSS Attack Detection Methods Based on XLNet and GRU

跨站点脚本 计算机科学 互联网 人工智能 一般化 脚本语言 脆弱性(计算) 机器学习 数据挖掘 计算机安全 Web应用程序安全性 万维网 数学 Web开发 操作系统 数学分析
作者
Jie Luo,Guoqing Xu
标识
DOI:10.1109/rcae53607.2021.9638820
摘要

With the progress of science and technology and the development of Internet technology, Internet technology has penetrated into various industries in today’s society. But this explosive growth is also troubling information security. Among them, XSS (cross-site scripting vulnerability) is one of the most influential vulnerabilities in Internet applications in recent years. Traditional network security detection technology is becoming more and more weak in the new network environment, and deep learning methods such as CNN and RNN can only learn the spatial or timing characteristics of data samples in a single way. In this paper, a generalized self-regression pretraining model XLNet and GRU XSS attack detection method is proposed, the self-regression pretrained model XLNet is introduced and combined with GRU to learn the time series and spatial characteristics of the data, and the generalization capability of the model is improved by using dropout. Faced with the increasingly complex and ever-changing XSS payload, this paper refers to the character-level convolution to establish a dictionary to encode the data samples, thus preserving the characteristics of the original data and improving the overall efficiency, and then transforming it into a two-dimensional spatial matrix to meet XLNet’s input requirements. The experimental results on the Github data set show that the accuracy of this method is 99.92 percent, the false positive rate is 0.02 percent, the accuracy rate is 11.09 percent higher than that of the DNN method, the false positive rate is 3.95 percent lower, and other evaluation indicators are better than GRU, CNN and other comparative methods, which can improve the detection accuracy and system stability of the whole detection system. This multi-model fusion method can make full use of the advantages of each model to improve the accuracy of system detection, on the other hand, it can also enhance the stability of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵凝竹完成签到 ,获得积分0
14秒前
18秒前
SUN发布了新的文献求助10
24秒前
我是老大应助花谢采纳,获得10
27秒前
28秒前
SUN完成签到,获得积分10
30秒前
nannan发布了新的文献求助10
35秒前
37秒前
37秒前
西湖醋鱼完成签到,获得积分10
48秒前
汉堡包应助xiaoxiao采纳,获得10
48秒前
花谢完成签到,获得积分10
48秒前
Jelly发布了新的文献求助10
48秒前
JamesPei应助笑点低剑封采纳,获得10
59秒前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
嘻嘻哈哈应助盘羊采纳,获得10
1分钟前
nannan完成签到,获得积分10
1分钟前
syalonyui完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助岑寄灵采纳,获得10
1分钟前
book卟发布了新的文献求助10
1分钟前
kattt发布了新的文献求助10
1分钟前
1分钟前
岑寄灵发布了新的文献求助10
1分钟前
book卟完成签到,获得积分10
1分钟前
yeah18完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助book卟采纳,获得10
1分钟前
1分钟前
敏感沛春发布了新的文献求助10
1分钟前
嘻嘻哈哈应助朱志伟采纳,获得10
1分钟前
1分钟前
1分钟前
唯爱林完成签到,获得积分10
1分钟前
唯爱林发布了新的文献求助10
1分钟前
1分钟前
拼搏海云发布了新的文献求助10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
kattt完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301944
求助须知:如何正确求助?哪些是违规求助? 4449309
关于积分的说明 13848145
捐赠科研通 4335449
什么是DOI,文献DOI怎么找? 2380300
邀请新用户注册赠送积分活动 1375305
关于科研通互助平台的介绍 1341402