Structure-Preserving Deraining with Residue Channel Prior Guidance

计算机科学 能见度 人工智能 编码(集合论) 源代码 路径(计算) 计算机视觉 图像(数学) 模式识别(心理学) 操作系统 光学 物理 集合(抽象数据类型) 程序设计语言
作者
Qiaosi Yi,Juncheng Li,Qinyan Dai,Faming Fang,Guixu Zhang,Tieyong Zeng
标识
DOI:10.1109/iccv48922.2021.00420
摘要

Single image deraining is important for many high-level computer vision tasks since the rain streaks can severely degrade the visibility of images, thereby affecting the recognition and analysis of the image. Recently, many CNN-based methods have been proposed for rain removal. Although these methods can remove part of the rain streaks, it is difficult for them to adapt to real-world scenarios and restore high-quality rain-free images with clear and accurate structures. To solve this problem, we propose a Structure-Preserving Deraining Network (SPDNet) with RCP guidance. SPDNet directly generates high-quality rain-free images with clear and accurate structures under the guidance of RCP but does not rely on any rain-generating assumptions. Specifically, we found that the RCP of images contains more accurate structural information than rainy images. Therefore, we introduced it to our deraining network to protect structure information of the rain-free image. Meanwhile, a Wavelet-based Multi-Level Module (WMLM) is proposed as the backbone for learning the background information of rainy images and an Interactive Fusion Module (IFM) is designed to make full use of RCP information. In addition, an iterative guidance strategy is proposed to gradually improve the accuracy of RCP, refining the result in a progressive path. Extensive experimental results on both synthetic and real-world datasets demonstrate that the proposed model achieves new state-of-the-art results. Code: https://github.com/Joyies/SPDNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
mjc完成签到 ,获得积分10
3秒前
JingP发布了新的文献求助10
5秒前
Kilig完成签到,获得积分10
7秒前
7秒前
LIBin完成签到,获得积分20
7秒前
CHEN完成签到 ,获得积分10
8秒前
柒柒完成签到,获得积分10
8秒前
zcy完成签到 ,获得积分20
8秒前
南方周末完成签到 ,获得积分10
9秒前
JingP发布了新的文献求助10
15秒前
善学以致用应助sdl采纳,获得10
16秒前
yang完成签到,获得积分10
17秒前
Simlove完成签到,获得积分10
17秒前
金枪鱼子发布了新的文献求助30
17秒前
寒冷的寻菱完成签到,获得积分10
18秒前
18秒前
20秒前
Hevesy完成签到,获得积分10
20秒前
orixero应助明理的凌旋采纳,获得10
20秒前
积极访冬发布了新的文献求助10
21秒前
就是不签名完成签到,获得积分10
22秒前
哇芽完成签到,获得积分10
23秒前
WESTBROOK发布了新的文献求助10
24秒前
24秒前
羔羊发布了新的文献求助10
25秒前
汉堡包应助Simlove采纳,获得10
25秒前
berry完成签到,获得积分10
25秒前
学霸宇大王完成签到 ,获得积分10
27秒前
kanuary发布了新的文献求助10
28秒前
orixero应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
董致宇发布了新的文献求助10
30秒前
30秒前
ding应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
李健应助科研通管家采纳,获得10
31秒前
31秒前
彭于晏应助科研通管家采纳,获得10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963841
求助须知:如何正确求助?哪些是违规求助? 3509733
关于积分的说明 11148691
捐赠科研通 3243549
什么是DOI,文献DOI怎么找? 1792132
邀请新用户注册赠送积分活动 873523
科研通“疑难数据库(出版商)”最低求助积分说明 803808