Cooperative task offloading and resource allocation for UAV-enabled mobile edge computing systems

计算机科学 移动边缘计算 用户设备 计算卸载 任务(项目管理) 能源消耗 实时计算 GSM演进的增强数据速率 计算 移动设备 边缘计算 块(置换群论) 服务器 分布式计算 计算机网络 嵌入式系统 基站 操作系统 人工智能 算法 管理 经济 生态学 几何学 数学 生物
作者
Dahu Xu,Ding Xu
出处
期刊:Computer Networks [Elsevier]
卷期号:223: 109574-109574 被引量:7
标识
DOI:10.1016/j.comnet.2023.109574
摘要

Unmanned aerial vehicle (UAV)-enabled mobile edge computing (MEC) systems can provide flexible computation services to user equipments (UEs). On the one hand, the UAV can be flexibly deployed to provide computation services to UEs in remote areas or where intensive computing is required. On the other hand, the UAV can approach UEs conveniently to enhance the offloading performance. However, when UEs are widely distributed, the UEs will consume high energy to offload tasks to the UAV, or the UAV will need to consume significant energy to fly close to different UEs to ensure reliable computation offloading, which is unfriendly to the energy-constrained UAV. To tackle these issues, in this paper, we propose a cooperative task offloading scheme for the UAV-enabled MEC systems. Specifically, we consider a UAV-enabled MEC system consisting of a UAV serving as a MEC server for multiple near and far UEs, where each UE has a dividable computation task to be computed and can offload a part of the task to the UAV for computing. The task offloading of each far UE is proposed to be assisted by an associated near UE, where each far UE first sends its task to the associated near UE, and then the near UE offloads its own task and the task from the far UE to the UAV. An iterative algorithm based on the block coordinate descent method is proposed to optimize the UAV's trajectory, the computation and communication resources for minimizing the weighted sum energy consumption of the UEs and the UAV. Specifically, the UAV's trajectory is optimized based on the successive convex approximation method, and the computation and communication resources are optimized via the Lagrangian dual method. Simulation results are presented to verify the effectiveness of the proposed algorithm. It is shown that compared to the state-of-the-art algorithms in existing literature, the proposed algorithm achieves much lower energy consumption, especially when the UEs carry more task data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luxiaoyu发布了新的文献求助10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
打打应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
1秒前
真实的煎饼完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Huzhu应助科研通管家采纳,获得10
1秒前
zpctx应助菠菜采纳,获得50
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
kento应助科研通管家采纳,获得50
1秒前
华仔应助科研通管家采纳,获得10
1秒前
CR7应助科研通管家采纳,获得20
1秒前
1秒前
甜甜应助科研通管家采纳,获得10
1秒前
FashionBoy应助陈俊豪采纳,获得10
1秒前
陈诺发布了新的文献求助10
1秒前
李健应助科研通管家采纳,获得10
1秒前
S杨发布了新的文献求助30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
2秒前
不安青牛应助科研通管家采纳,获得10
2秒前
2秒前
sacrum13完成签到,获得积分10
2秒前
烟花应助HIT_C采纳,获得30
2秒前
晓森发布了新的文献求助10
3秒前
3秒前
3秒前
lin发布了新的文献求助10
3秒前
4秒前
英姑应助Sean采纳,获得10
4秒前
酷波er应助阿拉采纳,获得10
4秒前
Kiritoshi应助真实的煎饼采纳,获得30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489969
求助须知:如何正确求助?哪些是违规求助? 4588744
关于积分的说明 14420741
捐赠科研通 4520420
什么是DOI,文献DOI怎么找? 2476681
邀请新用户注册赠送积分活动 1462196
关于科研通互助平台的介绍 1435085