Exploring the Key Design Attributes of Cafés from User-Generated Contents - A Case Study of Two Cafés of Unique Interior Designs in Yeonnam-dong, Seoul -

社会化媒体 分类 计算机科学 万维网 Python(编程语言) 铲运机现场 钥匙(锁) 标记云 广告 情报检索 多媒体 人工智能 业务 可视化 计算机安全 操作系统
作者
G. Álvarez,Aram Min
出处
期刊:Korean Institute of Interior Design Journal [Korean Institute of Interior Design]
卷期号:31 (6): 13-22
标识
DOI:10.14774/jkiid.2022.31.6.013
摘要

In the last couple of decades, the use of social media has consistently increased. Different social media platforms allow users to interact and create diverse types of content, making them able to share their opinions. With brands getting involved in these platforms, it is important to know how their image is portrayed by their customers on social media. This includes the café industry. The purpose of our study is twofold. One is to understand which design attributes make a café appealing to social media users, and another is to examine whether the Google Cloud Vision API is able to differentiate the key design attributes using user-generated content, which are Instagram posts in this research. In order to achieve these aims, we conducted a comparative case study using two cafés of unique interior designs located in Yeonnam-dong in Seoul, South Korea. Specifically, Greem Cafe and Perception Coffee were used. Using these cases as hashtags, we scraped the posts using a Python web scraper and screened out the posts irrelevant to the cafés. After, we ran them through the Google Cloud Vision API to obtain the labels and screened out the labels irrelevant to the interior designs, such as people and amenities. Finally, we were able to categorize the label to different design attributes and compare and contrast the labels from two cafés. The main differences shown in the results from the labels are that Greem Café had Color and Cartoon attribute labels like “Black-and-White” and “Drawing” that clearly represent the cartoonish interior design style. On the other hand, Perception Coffee’s most frequent label, “Wood” along with other labels like “Aeolian Landform” identify their wooden ceiling design. With these results, it is shown that the Google Cloud Vision API is able to distinguish the main design elements from both cafés. This research utilizes a new tool that can be useful for future researchers and designers that deal with big data, also this research brings insight for designers at the time of creating new places by analyzing data made by consumers and promotes the usage of social media data as a tool for design thinking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗大壮完成签到,获得积分10
刚刚
刚刚
1秒前
4秒前
4秒前
5秒前
高贵梦秋发布了新的文献求助10
7秒前
8秒前
Linson发布了新的文献求助10
10秒前
SYY完成签到,获得积分10
11秒前
ahq发布了新的文献求助10
11秒前
somnus_fu发布了新的文献求助50
11秒前
citrus完成签到,获得积分10
12秒前
南京必吃发布了新的文献求助10
12秒前
13秒前
QiLe完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
17秒前
风中冰香应助WZ采纳,获得10
18秒前
18秒前
完美世界应助somnus_fu采纳,获得10
19秒前
Hello应助Evander采纳,获得10
20秒前
香蕉诗蕊给爱喷火的小恐龙的求助进行了留言
20秒前
倪倪发布了新的文献求助30
20秒前
22秒前
mera发布了新的文献求助30
22秒前
3sigma发布了新的文献求助10
23秒前
26秒前
26秒前
27秒前
28秒前
30秒前
无花果应助Qwe采纳,获得10
30秒前
30秒前
fuyu98发布了新的文献求助30
32秒前
Evander发布了新的文献求助10
32秒前
lemon发布了新的文献求助10
34秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
ccm应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073