已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward Interpretability in Fault Diagnosis for Autonomous Vehicles: Interpretation of Sensor Data Anomalies

可解释性 计算机科学 异常检测 残余物 数据挖掘 断层(地质) 人工智能 机器学习 算法 地震学 地质学
作者
Yukun Fang,Haigen Min,Xia Wu,Xiaoping Lei,Shixiang Chen,Rui Teixeira,Xiangmo Zhao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (5): 5014-5027 被引量:15
标识
DOI:10.1109/jsen.2023.3236838
摘要

To guarantee the safety and reliability of autonomous driving applications, it is indispensable to construct a proper fault diagnosis framework tailored to autonomous vehicles. Fault diagnosis aims to provide essential information about the system operational status and its interpretation facilitates decision-making and mitigates the potential operation risks. In the present work, interpretability issue in fault diagnosis for autonomous vehicles is discussed from the sensor data analytics perspective. Environmental impact is first evaluated using the noise energy as a measure to interpret the impact on sensor data caused by the environment. A signal quality indicator is proposed and Savitzky–Golay filters are applied for online denoising, acting as a countermeasure to mitigate the impact and to enhance the data quality. Then, the adversarial learned denoising shrinkage autoencoder (ALDSAE), an adversarial learning neural network, is constructed for sensor data anomaly detection. It considers an adversarial training technique to improve the performance of the anomaly detector. A residual explainer specific to the ALDSAE model is employed to calculate the contribution of each input feature to the anomaly score in order to interpret the anomaly detection results. Several experiments with the collected data from an autonomous vehicle in a real test field are implemented to validate the effectiveness of the proposed approaches. Results show that the area under the ROC curve (AUC_ROC) of the proposed ALDSAE is over 20% higher in average than several traditional anomaly detectors, and the mean explanation accuracy of the residual explainer achieves similar performance with the widely employed kernel Shapley additive explanation (SHAP) with more than 99% reduction in mean response time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新手小帆发布了新的文献求助10
1秒前
半两月光发布了新的文献求助10
2秒前
UACurry发布了新的文献求助10
3秒前
aprise完成签到 ,获得积分10
4秒前
wu发布了新的文献求助10
4秒前
celine完成签到 ,获得积分10
4秒前
petrichor完成签到 ,获得积分10
5秒前
defvfv发布了新的文献求助10
6秒前
蕾蕾完成签到,获得积分10
7秒前
9秒前
9秒前
fjh应助半两月光采纳,获得30
10秒前
13秒前
泓凯骏发布了新的文献求助10
16秒前
喜悦夏青发布了新的文献求助10
16秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
马文杰完成签到 ,获得积分10
19秒前
田様应助Claudia采纳,获得10
21秒前
wq完成签到,获得积分10
22秒前
无限达完成签到,获得积分10
23秒前
闪闪书桃完成签到,获得积分20
23秒前
26秒前
mov完成签到,获得积分10
26秒前
闪闪书桃发布了新的文献求助30
27秒前
超帅慕晴完成签到,获得积分10
29秒前
科研通AI5应助小古采纳,获得10
29秒前
ZHH发布了新的文献求助10
32秒前
32秒前
momo完成签到,获得积分10
33秒前
有川洋一完成签到 ,获得积分10
34秒前
36秒前
peace发布了新的文献求助10
38秒前
雍雍完成签到 ,获得积分10
39秒前
耍酷鼠标完成签到 ,获得积分0
39秒前
ZhouYW应助小肥羊采纳,获得10
41秒前
打打应助daihq3采纳,获得10
42秒前
小古发布了新的文献求助10
42秒前
orixero应助meng采纳,获得10
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491