A novel composite colorimetric sensor array for quality characterization of shrimp paste based on indicator displacement assay and etching of silver nanoprisms

小虾 偏最小二乘回归 支持向量机 线性判别分析 化学 人工智能 色谱法 生物系统 材料科学 计算机科学 机器学习 生物 渔业
作者
Xueya Jiao,Xingyi Huang,Shanshan Yu,Li Wang,Yu Wang,Xiaorui Zhang,Yi Ren
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (1) 被引量:8
标识
DOI:10.1111/jfpe.14195
摘要

Abstract In this study, a novel amino acids and salts‐sensitive colorimetric sensor array (CSA) was constructed to evaluate shrimp paste quality based on mechanisms of indicator displacement assay (IDA) and silver nanoprisms (AgNPRs) etching. Three supervised learning methods including linear discriminant analysis (LDA), K‐nearest neighbor (KNN), and Support Vector Machine (SVM) were applied to qualitatively distinguish shrimp paste from different geographical origins with the discriminant accuracy for prediction set of 94.44%, 97.22%, and 100%, respectively. Partial least squares (PLS) and SVM were further used to quantitatively predict the crucial compounds in shrimp paste. The correlation coefficients for prediction set ( R p ) of amino acid nitrogen and salt using PLS model were 0.8875 and 0.9478, respectively. And the prediction performance was significantly improved by using SVM analysis with R p of 0.9312 and 0.9500, respectively. The results indicated that the CSA can be an effective tool in the quality characterization of shrimp paste. Practical applications A novel amino acids and salts‐sensitive colorimetric sensor array (CSA) was constructed to evaluate shrimp paste quality based on mechanisms of indicator displacement assay (IDA) and silver nanoprisms (AgNPRs) etching. This study combined CSA with pattern recognition methods including LDA, KNN, and SVM modeling methods to effectively identify six different shrimp pastes with the highest recognition rate of the SVM model (100% for both training set and prediction set). Partial least squares (PLS) and SVM modeling methods were further applied to quantitatively predict the amino acid nitrogen and salt content of six different types of shrimp pastes with an excellent prediction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然语芙完成签到,获得积分10
1秒前
2秒前
YDX发布了新的文献求助10
2秒前
寒一完成签到,获得积分20
3秒前
3秒前
4秒前
天天快乐应助dfggg采纳,获得10
6秒前
6秒前
7秒前
殷一丹完成签到 ,获得积分10
7秒前
cola完成签到 ,获得积分10
8秒前
玉锅巴发布了新的文献求助10
8秒前
8秒前
大胆的初瑶完成签到,获得积分10
11秒前
Avery完成签到,获得积分10
11秒前
针真滴完成签到 ,获得积分10
12秒前
完美世界应助正直芫采纳,获得10
12秒前
微光应助ybbb采纳,获得10
13秒前
嘿嘿发布了新的文献求助30
13秒前
东方元语应助无极微光采纳,获得20
14秒前
15秒前
哈哈哈曲奇完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
zhuzhuzhu发布了新的文献求助10
22秒前
Mic应助感动的时光采纳,获得30
22秒前
24秒前
yy发布了新的文献求助10
27秒前
27秒前
28秒前
风清扬应助科研通管家采纳,获得30
28秒前
酷波er应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
雨姐科研应助科研通管家采纳,获得10
28秒前
Lucas应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
28秒前
浮游应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
风清扬应助科研通管家采纳,获得30
28秒前
风清扬应助科研通管家采纳,获得30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541416
求助须知:如何正确求助?哪些是违规求助? 4627903
关于积分的说明 14605540
捐赠科研通 4568935
什么是DOI,文献DOI怎么找? 2504849
邀请新用户注册赠送积分活动 1482334
关于科研通互助平台的介绍 1453871