Fast Deformable Image Registration for Real-Time Target Tracking During Radiation Therapy Using Cine MRI and Deep Learning

人工智能 图像配准 医学 仿射变换 计算机视觉 矢状面 实时核磁共振成像 核医学 试验装置 计算机科学 磁共振成像 图像(数学) 放射科 数学 纯数学
作者
Brady Hunt,G.S. Gill,Daniel A. Alexander,Samuel S. Streeter,David J. Gladstone,Gregory A. Russo,Bassem I. Zaki,Brian W. Pogue,Rongxiao Zhang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:115 (4): 983-993 被引量:17
标识
DOI:10.1016/j.ijrobp.2022.09.086
摘要

We developed a deep learning (DL) model for fast deformable image registration using 2-dimensional sagittal cine magnetic resonance imaging (MRI) acquired during radiation therapy and evaluated its potential for real-time target tracking compared with conventional image registration methods.Our DL model uses a pair of cine MRI images as input and provides a motion vector field (MVF) as output. The MVF is then applied to align the input images. A retrospective study was conducted to train and evaluate our model using cine MRI data from patients undergoing treatment for abdominal and thoracic tumors. For each treatment fraction, MR-linear accelerator delivery log files, tracking videos, and cine image files were analyzed. Individual MRI frames were temporally sampled to construct a large set of image registration pairs used to evaluate multiple methods. The DL model was optimized using 5-fold cross validation, and model outputs (transformed images and MVFs) using test set images were saved for comparison with 3 conventional registration methods (affine, b-spline, and demons). Evaluation metrics were 3-fold: (1) registration error, (2) MVF stability (both spatial and temporal), and (3) average computation time.We analyzed >21 hours of cine MRI (>629,000 frames) acquired during 86 treatment fractions from 21 patients. In a test set of 10,320 image registration pairs, DL registration outperformed conventional methods in both registration error (affine, b-spline, demons, DL; root mean square error: 0.067, 0.040, 0.036, 0.032; paired t test demons vs DL: t[20] = 4.2, P < .001) and computation time per frame (51, 1150, 4583, 8 ms). Among deformable methods, spatial stability of resulting MVFs was comparable; however, the DL model had significantly improved temporal consistency.DL-based image registration can leverage large-scale MR cine data sets to outperform conventional registration methods and is a promising solution for real-time deformable motion estimation in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七八八点半了完成签到,获得积分10
5秒前
shmorby完成签到 ,获得积分10
7秒前
英俊的铭应助WissF-采纳,获得10
7秒前
遇晴发布了新的文献求助10
9秒前
10秒前
天玄一刀发布了新的文献求助10
14秒前
阿治发布了新的文献求助30
15秒前
江流儿完成签到 ,获得积分10
15秒前
Orange应助GAS采纳,获得10
16秒前
16秒前
舒服的寻云完成签到 ,获得积分20
17秒前
渭水飞熊完成签到,获得积分10
18秒前
传统的又蓝完成签到,获得积分10
18秒前
etal5535发布了新的文献求助10
19秒前
财来完成签到 ,获得积分10
20秒前
21秒前
AUBECHU发布了新的文献求助10
21秒前
富贵儿完成签到 ,获得积分10
22秒前
24秒前
行之发布了新的文献求助10
25秒前
orixero应助汪汪汪采纳,获得10
26秒前
HarryChan应助月月采纳,获得10
27秒前
Hhl完成签到,获得积分10
28秒前
30秒前
ikun在此完成签到,获得积分10
30秒前
田様应助Two-Capitals采纳,获得10
31秒前
遇晴完成签到,获得积分10
31秒前
FashionBoy应助天玄一刀采纳,获得10
32秒前
慕青应助科研通管家采纳,获得30
33秒前
CipherSage应助科研通管家采纳,获得10
33秒前
李健应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
无花果应助科研通管家采纳,获得10
33秒前
ED应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
鸣笛应助科研通管家采纳,获得30
34秒前
乐乐应助科研通管家采纳,获得10
34秒前
34秒前
隐形曼青应助科研通管家采纳,获得10
34秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942710
求助须知:如何正确求助?哪些是违规求助? 3487891
关于积分的说明 11045826
捐赠科研通 3218409
什么是DOI,文献DOI怎么找? 1778914
邀请新用户注册赠送积分活动 864448
科研通“疑难数据库(出版商)”最低求助积分说明 799512