Fast Deformable Image Registration for Real-Time Target Tracking During Radiation Therapy Using Cine MRI and Deep Learning

人工智能 图像配准 医学 仿射变换 计算机视觉 矢状面 实时核磁共振成像 核医学 试验装置 计算机科学 磁共振成像 图像(数学) 放射科 数学 纯数学
作者
Brady Hunt,G.S. Gill,Daniel A. Alexander,Samuel S. Streeter,David J. Gladstone,Gregory A. Russo,Bassem I. Zaki,Brian W. Pogue,Rongxiao Zhang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:115 (4): 983-993 被引量:13
标识
DOI:10.1016/j.ijrobp.2022.09.086
摘要

We developed a deep learning (DL) model for fast deformable image registration using 2-dimensional sagittal cine magnetic resonance imaging (MRI) acquired during radiation therapy and evaluated its potential for real-time target tracking compared with conventional image registration methods.Our DL model uses a pair of cine MRI images as input and provides a motion vector field (MVF) as output. The MVF is then applied to align the input images. A retrospective study was conducted to train and evaluate our model using cine MRI data from patients undergoing treatment for abdominal and thoracic tumors. For each treatment fraction, MR-linear accelerator delivery log files, tracking videos, and cine image files were analyzed. Individual MRI frames were temporally sampled to construct a large set of image registration pairs used to evaluate multiple methods. The DL model was optimized using 5-fold cross validation, and model outputs (transformed images and MVFs) using test set images were saved for comparison with 3 conventional registration methods (affine, b-spline, and demons). Evaluation metrics were 3-fold: (1) registration error, (2) MVF stability (both spatial and temporal), and (3) average computation time.We analyzed >21 hours of cine MRI (>629,000 frames) acquired during 86 treatment fractions from 21 patients. In a test set of 10,320 image registration pairs, DL registration outperformed conventional methods in both registration error (affine, b-spline, demons, DL; root mean square error: 0.067, 0.040, 0.036, 0.032; paired t test demons vs DL: t[20] = 4.2, P < .001) and computation time per frame (51, 1150, 4583, 8 ms). Among deformable methods, spatial stability of resulting MVFs was comparable; however, the DL model had significantly improved temporal consistency.DL-based image registration can leverage large-scale MR cine data sets to outperform conventional registration methods and is a promising solution for real-time deformable motion estimation in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xiaojiu完成签到 ,获得积分10
1秒前
2秒前
徵xi完成签到,获得积分20
2秒前
Bryce完成签到 ,获得积分10
3秒前
用师兄单身换论文必中完成签到,获得积分10
4秒前
zhu完成签到,获得积分10
5秒前
5秒前
HUAJIAO发布了新的文献求助10
6秒前
6秒前
Zhengkeke发布了新的文献求助30
6秒前
xu发布了新的文献求助10
6秒前
cyj完成签到,获得积分10
7秒前
李健应助符寄柔采纳,获得10
9秒前
9秒前
sciq完成签到,获得积分10
10秒前
10秒前
赘婿应助prim采纳,获得10
11秒前
bq完成签到,获得积分10
11秒前
12秒前
归尘应助小奶瓶_采纳,获得10
12秒前
我是老大应助小奶瓶_采纳,获得10
12秒前
Bluedream发布了新的文献求助10
12秒前
13秒前
15秒前
徵xi发布了新的文献求助10
15秒前
栖木木完成签到 ,获得积分10
17秒前
英勇凝旋完成签到,获得积分10
19秒前
冯珂发布了新的文献求助30
19秒前
Ava应助科研通管家采纳,获得10
20秒前
瑞_应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
小墨应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776271
求助须知:如何正确求助?哪些是违规求助? 3321743
关于积分的说明 10207530
捐赠科研通 3037032
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797517
科研通“疑难数据库(出版商)”最低求助积分说明 757868