An Interpretable Multi-Scale Convolutional Attention Residual Neural Network for Glioma Grading with Raman Spectroscopy

卷积神经网络 残余物 分级(工程) 分级比例尺 计算机科学 人工神经网络 拉曼光谱 胶质瘤 人工智能 模式识别(心理学) 医学 物理 癌症研究 工程类 光学 算法 土木工程 外科
作者
Qingbo Li,Xupeng Shao,Yan Zhou,Yinyan Wang,Zeya Yan,Hongbo Bao,Lipu Zhou
出处
期刊:Analytical Methods [Royal Society of Chemistry]
被引量:1
标识
DOI:10.1039/d4ay02068e
摘要

Since the malignancy of gliomas varies with their grade, classifying gliomas of different grades can assist doctors in developing personalized surgical plans during surgery, thereby improving the prognosis. Raman spectroscopy is an optical method for real-time glioma diagnosis. However, high-grade glioma (HGG, WHO grades III and IV), low-grade glioma (LGG, WHO grades I and II) and normal tissue have similar biochemical components, leading to similar spectral characteristics. This similarity reduces classification accuracy when using traditional machine learning methods. In contrast, deep learning offers enhanced feature extraction capabilities without the need for extensive feature engineering. Nevertheless, the diversity in the scale of spectral features presents challenges in designing a neural network that effectively adapts to these characteristics. To address these issues, this paper proposes a Multi-Scale Convolutional Attention Residual Network (M-SCA ResNet), which incorporates multi-scale channel and spatial attention mechanisms along with residual structures to improve the model's feature extraction capabilities. The algorithm presented in this study, was employed to classify HGG, LGG, and healthy tissue and was compared with conventional machine learning and neural networks. The results indicate that the M-SCA ResNet achieved an identification accuracy exceeding 85% for all three tissue types, along with the highest weighted
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助朱先生采纳,获得10
刚刚
可爱的函函应助nml采纳,获得10
1秒前
Ronnie发布了新的文献求助10
1秒前
herococa应助sldl采纳,获得50
1秒前
小溪溪发布了新的文献求助10
2秒前
打打应助Vv采纳,获得10
2秒前
CMUSK发布了新的文献求助10
2秒前
yangliming发布了新的文献求助50
3秒前
3秒前
io完成签到,获得积分10
3秒前
萧水白应助缄默采纳,获得10
3秒前
赵大大发布了新的文献求助10
3秒前
缓慢黑米完成签到,获得积分10
4秒前
shang发布了新的文献求助10
4秒前
缥缈的傲霜完成签到,获得积分10
4秒前
A1完成签到,获得积分10
5秒前
朱先生完成签到,获得积分20
5秒前
遐蝶发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
诚心谷南发布了新的文献求助10
9秒前
万能图书馆应助forever采纳,获得10
9秒前
小苏苏完成签到,获得积分10
10秒前
10秒前
小小台yeah完成签到,获得积分10
10秒前
Tianxu Li完成签到,获得积分10
10秒前
传奇3应助怎么会这样呢采纳,获得10
11秒前
邹友亮完成签到,获得积分10
11秒前
朱先生发布了新的文献求助10
12秒前
trial发布了新的文献求助10
12秒前
星空之下ssr完成签到,获得积分10
13秒前
tianyy完成签到,获得积分10
13秒前
爱听歌契完成签到 ,获得积分10
13秒前
上天的朱完成签到 ,获得积分10
13秒前
io发布了新的文献求助10
14秒前
15秒前
Grace完成签到,获得积分10
16秒前
runner完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122