Deciphering risk factors for severe postherpetic neuralgia in patients with herpes zoster: an interpretable machine learning approach

疱疹后神经痛 木瓦 医学 接收机工作特性 机器学习 病历 药方 风险因素 曲线下面积 回顾性队列研究 儿科 人工智能 内科学 麻醉 神经病理性疼痛 计算机科学 免疫学 药理学 病毒
作者
Soo Jung Park,Jiangyue Han,Jong Bum Choi,Sangkee Min,Jungchan Park,Suein Choi
出处
期刊:Regional Anesthesia and Pain Medicine [BMJ]
卷期号:: rapm-106003
标识
DOI:10.1136/rapm-2024-106003
摘要

Introduction Postherpetic neuralgia (PHN) is a common complication of herpes zoster (HZ). This study aimed to use a large real-world electronic medical records database to determine the optimal machine learning model for predicting the progression to severe PHN and to identify the associated risk factors. Methods We analyzed the electronic medical records of 23,326 patients diagnosed with HZ from January 2010 to June 2020. PHN was defined as pain persisting for ≥90 days post-HZ, based on diagnostic and prescription codes. Five machine learning algorithms were compared with select the optimal predictive model and a subsequent risk factor analysis was conducted. Results Of the 23,326 patients reviewed, 8,878 met the eligibility criteria for the HZ cohort. Among these, 801 patients (9.0%) progressed to severe PHN. Among the various machine learning approaches, XGBoost—an approach that combines multiple decision trees to improve predictive accuracy—performed the best in predicting outcomes ( F 1 score, 0.351; accuracy, 0.900; area under the receiver operating characteristic curve, 0.787). Using this model, we revealed eight major risk factors: older age, female sex, history of shingles and cancer, use of immunosuppressants and antidepressants, intensive initial pain, and the neutrophil-to-lymphocyte ratio. When patients were categorized into low-risk and high-risk groups based on the predictive model, PHN was seven times more likely to occur in the high-risk group (p<0.001). Conclusions Leveraging machine learning analysis, this study identifies an optimal model for predicting severe PHN and highlights key associated risk factors. This model will enable the establishment of more proactive treatments for high-risk patients, potentially mitigating the progression to severe PHN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HaHa007完成签到 ,获得积分10
1秒前
zino发布了新的文献求助10
1秒前
科研助手6应助Junping采纳,获得10
1秒前
赵培培发布了新的文献求助10
1秒前
小小怪将军完成签到,获得积分10
2秒前
Enckson完成签到,获得积分10
2秒前
pp发布了新的文献求助10
2秒前
lessormoto发布了新的文献求助10
2秒前
搜集达人应助爱吃大嘴巴采纳,获得10
3秒前
3秒前
PENGDOCTOR完成签到,获得积分10
3秒前
酷波er应助铀氪锂锂采纳,获得10
3秒前
4秒前
4秒前
5秒前
爆米花应助全智甜采纳,获得10
5秒前
5秒前
5秒前
自信安南完成签到,获得积分10
7秒前
7秒前
领导范儿应助许十五采纳,获得10
7秒前
充电宝应助大的绿帽子采纳,获得10
7秒前
8秒前
就叫柠檬吧应助冷静书白采纳,获得20
9秒前
9秒前
Hui发布了新的文献求助20
9秒前
佩琪发布了新的文献求助10
9秒前
李子衡发布了新的文献求助10
9秒前
Junping完成签到,获得积分10
9秒前
bing应助机灵安白采纳,获得10
10秒前
10秒前
冰与火发布了新的文献求助10
10秒前
mushen完成签到,获得积分10
10秒前
yutong关注了科研通微信公众号
11秒前
陶醉的绮菱完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助大可采纳,获得10
12秒前
12秒前
mushen发布了新的文献求助10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790218
求助须知:如何正确求助?哪些是违规求助? 3334933
关于积分的说明 10272867
捐赠科研通 3051419
什么是DOI,文献DOI怎么找? 1674665
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846