TFAGL: A Novel Agent Graph Learning Method Using Time-Frequency EEG for Major Depressive Disorder Detection

脑电图 重性抑郁障碍 时频分析 人工智能 计算机科学 图形 心理学 理论计算机科学 神经科学 临床心理学 心情 计算机视觉 滤波器(信号处理)
作者
Z. J. Xu,C. L. Philip Chen,Tong Zhang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1592-1605 被引量:3
标识
DOI:10.1109/taffc.2025.3527459
摘要

The abnormality in depression exhibits reciprocal imbalanced connectivity between brain regions rather than increased or decreased activity of one particular area. Current works primarily align the distributions of EEG electrodes with insufficient simulation of neurophysiological structures. Moreover, they neglect significant collaborative relationships among diverse brain regions, which limits the performance of MDD detection. Considering the comprehensive information across brain regions and domains, we propose a novel EEG-based MDD detection model named Time-Frequency Agent Graph Learning (TFAGL), to capture the specific whole-brain level collaborative mechanism of MDD. Specifically, we generate agent nodes adaptively to perform global interactions among regions to sufficiently simulate the function of principal neurons, thereby forming a dynamic local-global connectivity graph to capture connectivity patterns for intra- and inter-regions. Furthermore, interactive learning across different receptive fields through multi-scale graph convolution is applied for each domain and connectivity. Besides, we construct feature extractors for both time and frequency domains and apply intra- and inter-domain constraints to remove redundancy and enhance the discriminability, thus obtaining comprehensive information representations. Extensive experiments on the public EEG MDD detection datasets demonstrate the superiority of TFAGL compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伍幻姬完成签到,获得积分10
刚刚
十三发布了新的文献求助10
1秒前
1秒前
吴糖完成签到,获得积分10
2秒前
pjn完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
清子关注了科研通微信公众号
3秒前
朴实的乐枫完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
希望天下0贩的0应助elfff采纳,获得10
5秒前
学术智子发布了新的文献求助10
6秒前
6秒前
专注的觅儿完成签到,获得积分20
7秒前
7秒前
兴奋的飞薇完成签到,获得积分10
7秒前
CodeCraft应助psj采纳,获得10
7秒前
7秒前
修狗儿发布了新的文献求助10
7秒前
7秒前
HAN完成签到,获得积分10
7秒前
lucky发布了新的文献求助10
8秒前
李健的粉丝团团长应助xxl采纳,获得10
8秒前
8秒前
8秒前
爆米花应助666采纳,获得10
9秒前
fly发布了新的文献求助30
9秒前
凉汐完成签到,获得积分20
9秒前
白一航发布了新的文献求助10
10秒前
11秒前
jiang发布了新的文献求助10
11秒前
keres发布了新的文献求助10
11秒前
tingting1完成签到,获得积分10
11秒前
云边发布了新的文献求助10
11秒前
腊八蒜完成签到,获得积分10
11秒前
yjh发布了新的文献求助20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468932
求助须知:如何正确求助?哪些是违规求助? 4572214
关于积分的说明 14334335
捐赠科研通 4499055
什么是DOI,文献DOI怎么找? 2464831
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427961