Difference-complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 分割 合成孔径雷达 像素 一致性(知识库) 模式识别(心理学) 机器学习 计算机视觉 遥感 地质学
作者
Wenqi Han,Wen Jiang,Jie Geng,Miao Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 566-580
标识
DOI:10.1109/tip.2025.3526064
摘要

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrW完成签到,获得积分10
2秒前
lcls完成签到,获得积分10
2秒前
fff完成签到 ,获得积分10
3秒前
WaNgBO完成签到,获得积分10
3秒前
若枫完成签到,获得积分10
3秒前
劳资懒得起网名完成签到,获得积分10
3秒前
XTechMan完成签到,获得积分10
4秒前
念念完成签到,获得积分10
4秒前
4秒前
OK完成签到,获得积分10
5秒前
add完成签到 ,获得积分10
5秒前
小于完成签到,获得积分10
6秒前
青青子衿完成签到,获得积分0
6秒前
如意土豆完成签到 ,获得积分10
7秒前
FDD发布了新的文献求助10
7秒前
Srui完成签到,获得积分10
7秒前
HEAR应助yfwuy采纳,获得10
8秒前
aafrr完成签到 ,获得积分10
9秒前
阿宝完成签到,获得积分10
10秒前
蓝胖子发布了新的文献求助10
10秒前
小小完成签到,获得积分10
10秒前
HEIKU应助aceman采纳,获得10
10秒前
程程完成签到,获得积分10
10秒前
打打应助李安全采纳,获得10
11秒前
11秒前
11秒前
他们叫我龙完成签到,获得积分10
11秒前
舟舟完成签到,获得积分10
12秒前
科研通AI2S应助旅人采纳,获得10
12秒前
ty完成签到,获得积分10
12秒前
搜集达人应助bobecust采纳,获得10
13秒前
棵虫完成签到,获得积分10
13秒前
jane完成签到 ,获得积分10
13秒前
小墨墨完成签到 ,获得积分10
13秒前
DW完成签到,获得积分10
13秒前
南亭完成签到,获得积分10
14秒前
Ting完成签到 ,获得积分10
14秒前
wckow完成签到,获得积分10
15秒前
科研疯狗发布了新的文献求助10
15秒前
邓晓霞完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642