Core–Shell–Satellite Au@CeO2–Pd Plasmonical Photocatalysts for Suzuki–Miyaura Coupling Reaction

光催化 化学 等离子体子 表面等离子共振 光化学 电子 铃木反应 纳米技术 纳米颗粒 材料科学 催化作用 光电子学 物理 有机化学 量子力学
作者
Xiaohua Zhao,Xiaoxiao Liu,Xiang Liu,Weiyi Li,Ping Wang
出处
期刊:Applied Organometallic Chemistry [Wiley]
卷期号:39 (3) 被引量:1
标识
DOI:10.1002/aoc.7856
摘要

ABSTRACT Integration of localized surface plasmon resonance (LSPR) metallic nanocrystals into photocatalysis is an intriguing approach for light‐driven organic transformations. However, uncertain direction of hot carriers is a grand challenge, which fails to take full advantage of the LSPR excitation. In this work, core–shell gold@ceria nanosphere–supported segregated palladium species (Au@CeO 2 –Pd) have developed to steer the light absorption capability and charge carrier migration. Under simulated solar light irradiation, the core–shell–satellite Au@CeO 2 –Pd exhibited efficient light harvesting and colossal activity in the Suzuki coupling reaction. The plasmon‐induced hot electrons overpassed the Schottky barrier at the Au@CeO 2 interfaces and migrated from Au core to CeO 2 shell accordingly. Subsequently, the photogenerated electrons and hot electrons migrated from Au@CeO 2 core–shells to Pd, which acted as an electron acceptor. Detailed photocatalytic mechanism studies revealed that both photoexcited electrons and holes were the main active species involved in the photocatalytic Suzuki coupling reaction process. In particular, the diphenyl yield over Au@CeO 2 –Pd catalyst was ~1.7 times higher than that of core–shell–satellite Au@SiO 2 –Pd, where a 19‐nm‐thick SiO 2 shell was introduced to prevent the migration of hot electrons. This distinctly certified that the hot electrons transfer in the core–shell–satellite Au@CeO 2 –Pd under illumination played an important role to drive Suzuki reaction. Overall, this design of core–shell–satellite Au@CeO 2 –Pd plasmonic photocatalyst has the potential in the field of photo‐driven organic transformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
折镜发布了新的文献求助10
刚刚
why发布了新的文献求助10
刚刚
1秒前
2秒前
3秒前
折镜完成签到,获得积分10
5秒前
wmufwd完成签到,获得积分10
5秒前
5秒前
zhw发布了新的文献求助10
6秒前
8R60d8应助欢城采纳,获得10
6秒前
天子骄子发布了新的文献求助10
6秒前
Mida发布了新的文献求助10
7秒前
高贵紫丝完成签到,获得积分10
7秒前
szc完成签到,获得积分10
7秒前
林子发布了新的文献求助10
8秒前
9秒前
Lucas应助JUGG采纳,获得10
10秒前
10秒前
T_MC郭发布了新的文献求助10
11秒前
11秒前
11秒前
why完成签到,获得积分10
12秒前
12秒前
汉堡包应助witting采纳,获得10
12秒前
qiang发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
墨之未发布了新的文献求助10
15秒前
研友_P85D6Z发布了新的文献求助10
15秒前
Loooong发布了新的文献求助10
16秒前
真的OK完成签到,获得积分10
16秒前
领导范儿应助重要的人采纳,获得10
17秒前
17秒前
17秒前
18秒前
nini完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
Jason-1024完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871187
求助须知:如何正确求助?哪些是违规求助? 3413299
关于积分的说明 10683969
捐赠科研通 3137766
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834643
科研通“疑难数据库(出版商)”最低求助积分说明 781250