QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics

化学 代谢组学 色谱法
作者
Zhengyi Zhang,Huan Yang,Yanyi Wang,Lei Zhang,Shuhai Lin
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.analchem.4c04531
摘要

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals. Our algorithm combines the feature extraction capabilities of convolutional neural networks (CNNs) with the global computation capability of Transformer architecture. Data training in QuanFormer by using nearly 20,000 annotated regions-of-interest (ROIs) ensures unique prediction via bipartite matching, achieving 96.5% of the average precision value on the test set. Even without retraining, QuanFormer achieves over 90% accuracy in distinguishing true from false peaks. Performance was further analyzed using visualization techniques applied to the encoder and decoder layers. We also demonstrated that QuanFormer could correct retention time shifts for peak alignment and generally surpass the existing methods, including MZmine 3 and PeakDetective, to obtain a larger number of picked peaks and higher accurate quantification. Finally, we also carried out metabolomic analysis in a clinical cohort of breast cancer patients and utilized QuanFormer to detect and quantify the potential biomarkers. QuanFormer is open-source and available at https://github.com/LinShuhaiLAB/QuanFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dadsafyf完成签到,获得积分10
刚刚
壮观的垣完成签到,获得积分10
刚刚
yuyu完成签到,获得积分10
1秒前
548完成签到,获得积分10
1秒前
nicolaslcq完成签到,获得积分0
1秒前
Alas_gulf发布了新的文献求助10
2秒前
fuan发布了新的文献求助10
2秒前
2秒前
张钰完成签到,获得积分10
3秒前
3秒前
要减肥代双应助卧虎采纳,获得10
3秒前
我要circulation完成签到,获得积分10
4秒前
xl1990完成签到,获得积分10
5秒前
5秒前
6秒前
蒋宁发布了新的文献求助10
6秒前
善良香岚发布了新的文献求助10
6秒前
科研通AI6应助LBX采纳,获得20
7秒前
坦率岱周发布了新的文献求助10
7秒前
鱼鱼鱼完成签到,获得积分20
7秒前
爱笑的大雁完成签到,获得积分10
7秒前
lychee完成签到,获得积分10
8秒前
8秒前
风趣的洙完成签到,获得积分10
10秒前
10秒前
JF123_发布了新的文献求助10
10秒前
累啊发布了新的文献求助10
10秒前
10秒前
11秒前
Akim应助潇洒的竹杖采纳,获得10
11秒前
yuqiWang发布了新的文献求助10
11秒前
12秒前
13秒前
飞快的羊青完成签到,获得积分10
13秒前
七田皿完成签到,获得积分10
14秒前
单纯白梦发布了新的文献求助10
14秒前
14秒前
Heidi完成签到,获得积分10
15秒前
獵戶座的參宿四完成签到,获得积分10
15秒前
zhaoying完成签到,获得积分10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340709
求助须知:如何正确求助?哪些是违规求助? 4477046
关于积分的说明 13933849
捐赠科研通 4372955
什么是DOI,文献DOI怎么找? 2402666
邀请新用户注册赠送积分活动 1395551
关于科研通互助平台的介绍 1367628