Orthogonal matching pursuit algorithm based on a time-varying parameter dictionary and refined secondary selection and its application in rolling bearing fault diagnosis

匹配追踪 方位(导航) 选择(遗传算法) 算法 断层(地质) 匹配(统计) 计算机科学 模式识别(心理学) 人工智能 数学 统计 地质学 压缩传感 地震学
作者
Bingrong Miao,Yuyuan Wu,Peng Li,Yongjian Li,Kaixin Wu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217241312319
摘要

The performance of the orthogonal matching pursuit (OMP) algorithm in extracting the impacts of bearing faults is crucial for early fault detection in industrial applications. This approach largely depends on the constructed dictionary and the number of iterations. Traditional correlation filtering methods, which are used to determine dictionary parameters, are susceptible to noise, and dictionary atoms with fixed parameters are difficult to adapt to time-varying fault impact characteristics. Additionally, during the sparse decomposition stage, the use of excessive iterations can result in the OMP algorithm reconstructing signals with significant interference components. In this paper, a time-varying parameter and refined secondary selection-based orthogonal matching pursuit (TPRSS-OMP) algorithm are presented. Through time-domain partitioned correlation filtering and K-means clustering, the wavelet parameter interval of the dictionary is determined by utilizing the periodic characteristics of fault impact signals and interval shrinkage methods to construct a wavelet dictionary with time-varying parameters. In the process of calculating the sparse coefficients, the secondary selection-based orthogonal matching pursuit (SS-OMP) algorithm is optimized by directly considering the change in the envelope spectrum kurtosis of the signal reconstructed from the selected atoms. A simulation and three sets of experimental analyses show that the dictionary constructed with the proposed method closely matches the fault characteristics of the signal and can be used to accurately reconstruct the fault impact components of the signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
独特亦旋发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
hope完成签到,获得积分10
2秒前
明亮冰枫应助燕儿采纳,获得10
3秒前
吸吸灵光气完成签到,获得积分10
4秒前
4秒前
何永森完成签到,获得积分10
4秒前
5秒前
keyanzhai完成签到,获得积分20
5秒前
WHITE发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
www完成签到,获得积分10
7秒前
兔子先生发布了新的文献求助10
7秒前
8秒前
风枞完成签到 ,获得积分10
8秒前
执着乐双完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Lucas应助此时此刻采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
xxx发布了新的文献求助10
11秒前
领导范儿应助shellyAPTX4869采纳,获得10
12秒前
李健的小迷弟应助wcli采纳,获得10
12秒前
Akim应助聪明的破茧采纳,获得10
12秒前
lu完成签到,获得积分10
13秒前
13秒前
14秒前
积极从蕾应助CQMZY_2025采纳,获得10
14秒前
march发布了新的文献求助30
14秒前
15秒前
zaphkiel发布了新的文献求助10
18秒前
CNS天天有完成签到,获得积分20
18秒前
19秒前
19秒前
20秒前
FashionBoy应助橘子采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5814313
求助须知:如何正确求助?哪些是违规求助? 5916070
关于积分的说明 15539683
捐赠科研通 4937278
什么是DOI,文献DOI怎么找? 2658970
邀请新用户注册赠送积分活动 1605267
关于科研通互助平台的介绍 1559942