Unmanned Aerial Vehicle Path Planning in Complex Dynamic Environments Based on Deep Reinforcement Learning

强化学习 运动规划 钢筋 计算机科学 路径(计算) 人工智能 工程类 机器人 计算机网络 结构工程
作者
Jiandong Liu,Wei Luo,Guoqing Zhang,Ruihao Li
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:13 (2): 162-162
标识
DOI:10.3390/machines13020162
摘要

In this paper, an enhanced deep reinforcement learning approach is presented for unmanned aerial vehicles (UAVs) operating in dynamic and potentially hazardous environments. Initially, the capability to discern obstacles from visual data is achieved through the application of the Yolov8-StrongSort technique. Concurrently, a novel data storage system for deep Q-networks (DQN), named dynamic data memory (DDM), is introduced to hasten the learning process and convergence for UAVs. Furthermore, addressing the issue of UAVs’ paths veering too close to obstacles, a novel strategy employing an artificial potential field to adjust the reward function is introduced, which effectively guides the UAVs away from proximate obstacles. Rigorous simulation tests in an AirSim-based environment confirm the effectiveness of these methods. Compared to DQN, dueling DQN, M-DQN, improved Q-learning, DDM-DQN, EPF (enhanced potential field), APF-DQN, and L1-MBRL, our algorithm achieves the highest success rate of 77.67%, while also having the lowest average number of moving steps. Additionally, we conducted obstacle avoidance experiments with UAVs with different densities of obstacles. These tests highlight fast learning convergence and real-time obstacle detection and avoidance, ensuring successful achievement of the target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小凡123发布了新的文献求助10
6秒前
waterimagic2发布了新的文献求助10
6秒前
痴情的书南完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
10秒前
10秒前
搜集达人应助酷丫采纳,获得10
11秒前
12秒前
科研通AI2S应助洋桔梗采纳,获得10
12秒前
12秒前
12秒前
12秒前
13秒前
彭于彦祖应助JJ采纳,获得50
14秒前
看看发布了新的文献求助10
15秒前
16秒前
wadey发布了新的文献求助10
16秒前
17秒前
sunrise关注了科研通微信公众号
18秒前
19秒前
SciGPT应助文献狂人采纳,获得10
20秒前
graffiti发布了新的文献求助10
21秒前
21秒前
冷艳玉米完成签到,获得积分10
21秒前
默默安双发布了新的文献求助10
22秒前
ZYN发布了新的文献求助10
22秒前
22秒前
看看完成签到,获得积分20
25秒前
medaW发布了新的文献求助10
25秒前
洋桔梗发布了新的文献求助10
26秒前
可爱小哪吒完成签到,获得积分10
27秒前
Starwalker应助看看采纳,获得20
31秒前
橙子味的邱憨憨完成签到 ,获得积分10
32秒前
32秒前
今后应助ZYN采纳,获得10
33秒前
小马发布了新的文献求助10
34秒前
桐桐应助chemistrue采纳,获得20
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942456
求助须知:如何正确求助?哪些是违规求助? 3487769
关于积分的说明 11044970
捐赠科研通 3218116
什么是DOI,文献DOI怎么找? 1778781
邀请新用户注册赠送积分活动 864420
科研通“疑难数据库(出版商)”最低求助积分说明 799438