A novel reservoir simulation model based on physics informed neural networks

物理 人工神经网络 统计物理学 油藏计算 人工智能 循环神经网络 计算机科学
作者
A. C. Y. Liu,Jing Li,Jianfei Bi,Zhangxin Chen,Yan Wang,Chunhao Lu,Yan Jin,Botao Lin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (11)
标识
DOI:10.1063/5.0239376
摘要

Surrogate models are widely used for reservoir simulations in the petroleum industry to improve computational efficiency. However, the traditional surrogate model mainly relies on the data collected from production wells (e.g., well bottom pressure data and well production data) and ignores the physical mechanism of underground fluid flow; therefore, the surrogate model will be invalid in the case of insufficient data samples. In response to these challenges, a Hard-Soft physics informed neural network (HS-PINN) was proposed to simulate pressure fluctuations around producing wells without relying on any labeled data, where two coupled fully connected neural networks were comprised to control the Hard and Soft constraint conditions. Specifically, in the “Soft Constraint” condition, we employ a modified Lorentz function to incorporate underground flow theory and permeability fields into the loss function. Meanwhile, in the “Hard Constraint” condition, we incorporate an enforcement function in the “output layer” to ensure the network outputs satisfy the boundary and initial conditions. To demonstrate the HS-PINN model's robustness and accuracy abilities, we tested it for single and multi-well production in both noisy low-fidelity and high-fidelity geologic reservoir environments, and the HS-PINN prediction errors were less than 1% in both cases compared to simulation results by the commercial software “COMSOL.” Additionally, we assessed the impacts of varying well interference intensities, adjustments in collocation points counts within the control equations, and diverse geological characteristics on model performance to validate the generalization and stability of HS-PINN. Moreover, the HS-PINN-based surrogate model significantly improves the efficiency of uncertainty quantification tasks compared to simulation-based approaches, requiring only 8% of the computational time. The deep-learning surrogate models developed in this work offer a novel and efficient approach for simulating reservoir development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emberflow完成签到,获得积分10
1秒前
不眠的人完成签到,获得积分10
1秒前
2秒前
欣喜灯泡完成签到,获得积分20
2秒前
云中歌发布了新的文献求助20
2秒前
Ava应助毛豆爸爸采纳,获得10
3秒前
舒心完成签到,获得积分10
5秒前
Waki发布了新的文献求助10
6秒前
8秒前
TRY完成签到,获得积分10
10秒前
HandsomeShaw完成签到,获得积分10
12秒前
小雨关注了科研通微信公众号
12秒前
无花果应助朔夜采纳,获得10
12秒前
舒心发布了新的文献求助10
13秒前
芜湖完成签到,获得积分20
15秒前
纯真抽屉完成签到,获得积分10
16秒前
Harish完成签到,获得积分10
18秒前
打打应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
21秒前
25秒前
25秒前
Owen应助manan采纳,获得10
30秒前
31秒前
Juvenilesy完成签到 ,获得积分10
35秒前
35秒前
丘比特应助musong采纳,获得10
37秒前
动漫大师发布了新的文献求助10
40秒前
科研通AI5应助健忘的金采纳,获得10
42秒前
44秒前
加油加油发布了新的文献求助10
47秒前
49秒前
musong发布了新的文献求助10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781398
求助须知:如何正确求助?哪些是违规求助? 3326904
关于积分的说明 10228819
捐赠科研通 3041892
什么是DOI,文献DOI怎么找? 1669623
邀请新用户注册赠送积分活动 799180
科研通“疑难数据库(出版商)”最低求助积分说明 758751