亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on the quantification and automatic classification method of Chinese cabbage plant type based on point cloud data and PointNet++

聚类分析 计算机科学 人工智能 模式识别(心理学) 数据挖掘 机器学习
作者
Chongchong Yang,Lei Sun,Jun Zhang,Xiaofei Fan,Dongfang Zhang,Tianyi Ren,Minggeng Liu,Zhiming Zhang,Wei Ma
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fpls.2024.1458962
摘要

The accurate quantification of plant types can provide a scientific basis for crop variety improvement, whereas efficient automatic classification methods greatly enhance crop management and breeding efficiency. For leafy crops such as Chinese cabbage, differences in the plant type directly affect their growth and yield. However, in current agricultural production, the classification of Chinese cabbage plant types largely depends on manual observation and lacks scientific and unified standards. Therefore, it is crucial to develop a method that can quickly and accurately quantify and classify plant types. This study has proposed a method for the rapid and accurate quantification and classification of Chinese cabbage plant types based on point-cloud data processing and the deep learning algorithm PointNet++. First, we quantified the traits related to plant type based on the growth characteristics of Chinese cabbage. K-medoids clustering analysis was then used for the unsupervised classification of the data, and specific quantification of Chinese cabbage plant types was performed based on the classification results. Finally, we combined 1024 feature vectors with 10 custom dimensionless features and used the optimized PointNet++ model for supervised learning to achieve the automatic classification of Chinese cabbage plant types. The experimental results showed that this method had an accuracy of up to 92.4% in classifying the Chinese cabbage plant types, with an average recall of 92.5% and an average F1 score of 92.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Phaladius完成签到 ,获得积分10
32秒前
33秒前
自律发布了新的文献求助10
36秒前
情怀应助自律采纳,获得10
47秒前
油条发布了新的文献求助10
55秒前
普通用户30号完成签到 ,获得积分10
1分钟前
Hziyi完成签到,获得积分10
1分钟前
JamesPei应助啊啊啊啊采纳,获得10
1分钟前
jun完成签到 ,获得积分10
1分钟前
油条完成签到,获得积分10
1分钟前
1分钟前
1分钟前
啊啊啊啊发布了新的文献求助10
1分钟前
Coffee完成签到 ,获得积分10
1分钟前
爆米花应助油条采纳,获得10
2分钟前
孟筱完成签到 ,获得积分10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
喂我完成签到 ,获得积分10
2分钟前
JamesPei应助火星采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
小冉发布了新的文献求助10
3分钟前
呜呜呜完成签到,获得积分10
3分钟前
子月之路完成签到,获得积分10
3分钟前
小蘑菇应助小冉采纳,获得10
3分钟前
水论文的程序员完成签到 ,获得积分10
3分钟前
忐忑的书桃完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
英姑应助跳跃的大象采纳,获得10
4分钟前
无花果应助王手采纳,获得10
4分钟前
xdlongchem完成签到,获得积分10
4分钟前
5分钟前
小冉发布了新的文献求助10
5分钟前
5分钟前
5分钟前
温暖的胳肢窝完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804133
求助须知:如何正确求助?哪些是违规求助? 3348989
关于积分的说明 10341046
捐赠科研通 3065156
什么是DOI,文献DOI怎么找? 1682911
邀请新用户注册赠送积分活动 808557
科研通“疑难数据库(出版商)”最低求助积分说明 764600