SARLBP: Scale Adaptive Robust Local Binary Patterns for Texture Representation

人工智能 局部二进制模式 模式识别(心理学) 计算机科学 比例(比率) 代表(政治) 图像纹理 二进制数 计算机视觉 图像分割 数学 直方图 图像(数学) 地图学 地理 算术 政治 政治学 法学
作者
Parth C Upadhyay,John A. Lory,Guilherme N. DeSouza
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 969-981
标识
DOI:10.1109/tip.2025.3529376
摘要

Local Binary Pattern (LBP) and its variants have considerable success in a wide range of computer vision and pattern recognition applications, especially in tasks related to texture classification. However, the LBP method is sensitive to noise, scale variations and unable to capture macro-structure information. We propose a novel texture classification descriptor called Scale Adaptive Robust LBP (SARLBP) that enhances macro-level descriptive information by incorporating significantly larger scales, and a novel encoding scheme, which is designed to overcome the limitations of traditional LBP schemes. SARLBP method dynamically determines a single optimal scale for each radial direction from multiple scales based on the local area's characteristics. Subsequently, this descriptor extracts four distinct patterns derived from regional image medians of center pixel, radially-optimized neighbor pixels, optimized fixed scale-based pixels, and radial-difference-based pixels. This method adeptly captures texture information at both micro and macro scales by employing scale adaptation based on the distinctive attributes of the local region. As a result, it provides a comprehensive and robust representation of the texture images. Extensive experimentation was conducted on four publicly available texture databases (ALOT, CUReT, UMD, and Kylberg), considering both the presence and absence of two distinct types of interference (Gaussian noise and Salt-and-Pepper noise). The results reveal that our SARLBP method achieves significantly better performance than other state-of-the-art LPB variants with a fixed smaller feature dimension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
冷静的小甜瓜完成签到,获得积分10
1秒前
guojinyu发布了新的文献求助10
2秒前
科研通AI5应助我很懵逼采纳,获得10
3秒前
Owen应助坦率的寻双采纳,获得10
3秒前
香蕉觅云应助嗯哼采纳,获得10
3秒前
cyyy完成签到,获得积分20
4秒前
Thomas发布了新的文献求助10
4秒前
4秒前
桐桐应助谷雨秋采纳,获得10
5秒前
ssss完成签到,获得积分10
5秒前
5秒前
majiko发布了新的文献求助10
6秒前
Irissun完成签到,获得积分10
6秒前
6秒前
Leukocyte完成签到 ,获得积分10
7秒前
cyyy发布了新的文献求助10
8秒前
科研通AI5应助无谓采纳,获得10
8秒前
9秒前
破晓之照完成签到,获得积分10
9秒前
炙热的穆发布了新的文献求助10
9秒前
大个应助in采纳,获得10
9秒前
9秒前
lm完成签到,获得积分10
10秒前
10秒前
10秒前
Quin完成签到,获得积分10
10秒前
11秒前
proteinpurify完成签到,获得积分10
11秒前
11秒前
星期八完成签到,获得积分10
12秒前
动漫大师发布了新的文献求助10
13秒前
时尚的芮完成签到,获得积分20
13秒前
Quin发布了新的文献求助10
14秒前
fengyi发布了新的文献求助10
14秒前
Meya发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785970
求助须知:如何正确求助?哪些是违规求助? 3331479
关于积分的说明 10251380
捐赠科研通 3046903
什么是DOI,文献DOI怎么找? 1672249
邀请新用户注册赠送积分活动 801168
科研通“疑难数据库(出版商)”最低求助积分说明 759994