摩擦电效应
材料科学
纳米技术
纳米发生器
壳聚糖
石英
复合材料
化学工程
压电
工程类
作者
Baocheng Liu,Ping Zhang,Xin Zhang,Yunxiang Yang,Honghao Zhang
标识
DOI:10.1021/acsami.4c18241
摘要
Currently, triboelectric nanogenerators (TENGs) based on chitosan materials face challenges such as limited output power and suboptimal mechanical performance, restricting their application in biodegradable wearable devices and smart homes. Quartz fiber, an inorganic amorphous dielectric material known for its excellent mechanical robustness, thermal resilience, and electrical insulating characteristics, can positively impact the charge properties of chitosan films. Therefore, an innovative chitosan/quartz fiber TENG (CQ-TENG) has been developed by combining quartz fiber embedding and PVA blending techniques to effectively address the high brittleness and low output performance of chitosan-based TENGs. The interaction between chitosan and quartz fibers increases the number of polarization centers, enhancing the charge retention capacity of the CQ-TENG. As a result, the CQ-TENG achieves a time-averaged power density of 37.8 mW/m2, which is 3.3 times greater than that of a pure chitosan TENG, and is capable of easily powering miniature electronic devices. Additionally, the CQ-TENG demonstrates excellent cyclic stability and has been integrated into a motion sensor capable of detecting motion signals from hand and foot movements. The combination of quartz fiber embedding and PVA blending could also be applicable to other TENGs based on biotic materials with properties similar to those of chitosan. Furthermore, the cost-effective and high-performing TENG is expected to become increasingly prominent in wearable technology and smart homes in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI