KIF—Key Interactions Finder: A program to identify the key molecular interactions that regulate protein conformational changes

构象变化 分子动力学 计算机科学 构象集合 蛋白质-蛋白质相互作用 蛋白质结构 化学 生物系统 计算生物学 生物化学 计算化学 生物
作者
Rory Crean,Joanna S.G. Slusky,Peter M. Kasson,Shina Caroline Lynn Kamerlin
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (14) 被引量:1
标识
DOI:10.1063/5.0140882
摘要

Simulation datasets of proteins (e.g., those generated by molecular dynamics simulations) are filled with information about how a non-covalent interaction network within a protein regulates the conformation and, thus, function of the said protein. Most proteins contain thousands of non-covalent interactions, with most of these being largely irrelevant to any single conformational change. The ability to automatically process any protein simulation dataset to identify non-covalent interactions that are strongly associated with a single, defined conformational change would be a highly valuable tool for the community. Furthermore, the insights generated from this tool could be applied to basic research, in order to improve understanding of a mechanism of action, or for protein engineering, to identify candidate mutations to improve/alter the functionality of any given protein. The open-source Python package Key Interactions Finder (KIF) enables users to identify those non-covalent interactions that are strongly associated with any conformational change of interest for any protein simulated. KIF gives the user full control to define the conformational change of interest as either a continuous variable or categorical variable, and methods from statistics or machine learning can be applied to identify and rank the interactions and residues distributed throughout the protein, which are relevant to the conformational change. Finally, KIF has been applied to three diverse model systems (protein tyrosine phosphatase 1B, the PDZ3 domain, and the KE07 series of Kemp eliminases) in order to illustrate its power to identify key features that regulate functionally important conformational dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落忆完成签到 ,获得积分10
1秒前
1秒前
oraen1发布了新的文献求助10
1秒前
2秒前
2秒前
李健应助体贴的雁菱采纳,获得10
3秒前
Rafayel发布了新的文献求助10
3秒前
liangzhy完成签到,获得积分10
6秒前
asddragon发布了新的文献求助10
6秒前
科研通AI5应助zhougl采纳,获得10
7秒前
中国郎发布了新的文献求助10
8秒前
忘羡家的肥兔子完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
asddragon完成签到,获得积分10
12秒前
传奇3应助m1采纳,获得10
12秒前
认真的沛容完成签到 ,获得积分10
12秒前
13秒前
14秒前
哭泣朝雪发布了新的文献求助10
14秒前
gaozzzz完成签到,获得积分10
15秒前
赘婿应助无辜茉莉采纳,获得10
15秒前
pistachio发布了新的文献求助10
15秒前
东门吹雪发布了新的文献求助10
16秒前
17秒前
我超凶的完成签到,获得积分10
18秒前
ding应助阔达黎云采纳,获得10
19秒前
Zchena发布了新的文献求助20
19秒前
lwroche发布了新的文献求助10
20秒前
23秒前
25秒前
领导范儿应助Nancy采纳,获得30
28秒前
东伯雪鹰发布了新的文献求助10
30秒前
心内小白完成签到,获得积分10
32秒前
32秒前
32秒前
一禾发布了新的文献求助10
34秒前
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327403
关于积分的说明 10230923
捐赠科研通 3042284
什么是DOI,文献DOI怎么找? 1669963
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804