Practical and Ethical Challenges of Large Language Models in Education: A Systematic Scoping Review

分级(工程) 计算机科学 工程伦理学 能力(人力资源) 知识管理 数据科学 心理学 工程类 社会心理学 土木工程
作者
Lixiang Yan,Lele Sha,Linxuan Zhao,Yuheng Li,Roberto Martínez‐Maldonado,Guanliang Chen,Xinyu Li,Yueqiao Jin,Dragan Gǎsević
出处
期刊:Cornell University - arXiv 被引量:17
标识
DOI:10.48550/arxiv.2303.13379
摘要

Educational technology innovations leveraging large language models (LLMs) have shown the potential to automate the laborious process of generating and analysing textual content. While various innovations have been developed to automate a range of educational tasks (e.g., question generation, feedback provision, and essay grading), there are concerns regarding the practicality and ethicality of these innovations. Such concerns may hinder future research and the adoption of LLMs-based innovations in authentic educational contexts. To address this, we conducted a systematic scoping review of 118 peer-reviewed papers published since 2017 to pinpoint the current state of research on using LLMs to automate and support educational tasks. The findings revealed 53 use cases for LLMs in automating education tasks, categorised into nine main categories: profiling/labelling, detection, grading, teaching support, prediction, knowledge representation, feedback, content generation, and recommendation. Additionally, we also identified several practical and ethical challenges, including low technological readiness, lack of replicability and transparency, and insufficient privacy and beneficence considerations. The findings were summarised into three recommendations for future studies, including updating existing innovations with state-of-the-art models (e.g., GPT-3/4), embracing the initiative of open-sourcing models/systems, and adopting a human-centred approach throughout the developmental process. As the intersection of AI and education is continuously evolving, the findings of this study can serve as an essential reference point for researchers, allowing them to leverage the strengths, learn from the limitations, and uncover potential research opportunities enabled by ChatGPT and other generative AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
解洙发布了新的文献求助10
2秒前
2秒前
sanjun发布了新的文献求助10
2秒前
3秒前
一剑温柔完成签到 ,获得积分10
3秒前
含蓄的荔枝应助慢慢采纳,获得10
4秒前
CipherSage应助弎夜采纳,获得10
4秒前
5秒前
英俊的铭应助张不张采纳,获得10
6秒前
5cdc发布了新的文献求助10
6秒前
阿莫仙发布了新的文献求助10
8秒前
9秒前
脑洞疼应助小羊采纳,获得10
10秒前
周米粒发布了新的文献求助20
12秒前
RZ发布了新的文献求助10
12秒前
14秒前
14秒前
两味愚完成签到,获得积分10
14秒前
xch发布了新的文献求助10
15秒前
zck完成签到 ,获得积分10
16秒前
sanjun完成签到,获得积分10
18秒前
xionghaizi完成签到,获得积分10
19秒前
动漫大师发布了新的文献求助30
19秒前
21秒前
阿kkk发布了新的文献求助20
23秒前
yangz10完成签到 ,获得积分10
23秒前
传奇3应助雨洋采纳,获得10
23秒前
26秒前
宗宇杰发布了新的文献求助10
26秒前
26秒前
26秒前
Akim应助yangderder采纳,获得10
27秒前
华仔应助阿莫仙采纳,获得10
28秒前
彭于彦祖应助leeee采纳,获得20
28秒前
whisper发布了新的文献求助10
29秒前
xch完成签到,获得积分10
30秒前
张不张发布了新的文献求助10
31秒前
YifanWang应助粱忆寒采纳,获得40
33秒前
34秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819495
求助须知:如何正确求助?哪些是违规求助? 3362505
关于积分的说明 10417189
捐赠科研通 3080626
什么是DOI,文献DOI怎么找? 1694656
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403