A machine learning led investigation to understand individual difference and the human-environment interactive effect on classroom thermal comfort

热舒适性 阿什拉1.90 计算机科学 暖通空调 Boosting(机器学习) 机器学习 人工智能 数据库 模拟 人机交互 工程类 空调 地理 机械工程 气象学
作者
Haifeng Lan,Huiying Hou,Zhonghua Gou
出处
期刊:Building and Environment [Elsevier BV]
卷期号:236: 110259-110259 被引量:35
标识
DOI:10.1016/j.buildenv.2023.110259
摘要

The availability of the global thermal open database means that machine learning models have been increasingly applied in thermal comfort studies in order to understand the factors and mechanisms that affect human thermal sensation. Previous global database analyses focused less on classroom thermal comfort, however, and more on model accuracy, while model interpretation was usually ignored, and individual differences and interaction effects are particularly poorly explained. This study screened 4527 related records about classrooms from the ASHRAE Global Thermal Comfort Database II, and used the cleaned data to train a hybrid model of extreme gradient boosting (XGBoost) and Bayesian optimisation (BO). SHAP values were used to interpret the machine learning model. The results identified ten key influencing factors that are associated with thermal comfort, although their importance varies among individuals. The effects of the factors can also be divided into main effects (80%) and interactive effects (20%), and some interactive effects are more potent than the main effect. Three typical types of interactive effects are concluded: two-way interaction, one-way interaction, and cross-interaction. This study was based on a comprehensive global database and an innovative machine learning method, and will lead to a more robust personal comfort model (PCM) that guides HVAC design and regulation development in order to meet thermal environment and energy-saving requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡胡完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
JamesPei应助传统的开山采纳,获得10
1秒前
英姑应助认真的白易采纳,获得10
1秒前
1秒前
新羽完成签到,获得积分10
2秒前
zjx完成签到,获得积分10
2秒前
2秒前
香蕉筮完成签到 ,获得积分10
3秒前
3秒前
3秒前
思源应助jjh采纳,获得10
6秒前
胡胡发布了新的文献求助10
7秒前
7秒前
柯南发布了新的文献求助10
8秒前
8秒前
momo发布了新的文献求助10
8秒前
大个应助SnaiLinsist采纳,获得10
8秒前
隐形曼青应助lingchuan采纳,获得10
9秒前
10秒前
苹果发布了新的文献求助10
10秒前
所所应助小全采纳,获得10
10秒前
隐形曼青应助miaomiao采纳,获得10
11秒前
arrebol完成签到,获得积分10
11秒前
赘婿应助爱啃大虾采纳,获得10
11秒前
11秒前
qyn发布了新的文献求助10
11秒前
科研通AI5应助拉长的沛芹采纳,获得10
11秒前
薏晓完成签到 ,获得积分10
12秒前
深年完成签到,获得积分10
12秒前
12秒前
喜悦秋白完成签到,获得积分10
12秒前
13秒前
orixero应助妮妮采纳,获得10
13秒前
柯南完成签到,获得积分10
13秒前
13秒前
卡卡完成签到,获得积分10
14秒前
nilu发布了新的文献求助10
14秒前
15秒前
闪闪平凡发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271