Cross-Domain Nuclei Detection in Histopathology Images Using Graph-Based Nuclei Feature Alignment

判别式 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 域适应 特征提取 特征(语言学) 深度学习 图形 领域(数学分析) Boosting(机器学习) 特征向量 计算机视觉 分类器(UML) 数学 理论计算机科学 数学分析 哲学 语言学
作者
Zhi Wang,Kai Fan,Xiaoya Zhu,Honglei Liu,Gang Meng,Minghui Wang,Ao Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 78-88 被引量:5
标识
DOI:10.1109/jbhi.2023.3280958
摘要

As powerful tools deep neural networks have been successfully adopted for nuclei detection in histopathology images, whereas require the same probability distribution between training and testing data. However, domain shift among histopathology images widely exists in real-world applications and severely deteriorates the detection performance of deep neural networks. Despite encouraging results of existing domain adaptation methods, there remain challenges for cross-domain nuclei detection task. First, in view of the tiny size of nuclei, it is actually very difficult to obtain sufficient nuclei features, thus leading to a negative influence for feature alignment. Second, due to unavailable annotations in target domain, some extracted features contain background pixels and are thereby indiscriminative, which can largely confuse the alignment procedure. To address these challenges, in this paper, we propose an end-to-end graph-based nuclei feature alignment (GNFA) method for boosting cross-domain nuclei detection. Concretely, sufficient nuclei features are generated from nuclei graph convolutional network (NGCN) by aggregating information of adjacent nuclei upon construction of nuclei graph for successful alignment. In addition, importance learning module (ILM) is designed to further select discriminative nuclei features for mitigating negative influence of background pixels in target domain during alignment. By utilizing sufficient and discriminative node features generated from GNFA, our method can successfully perform feature alignment and effectively alleviate domain shift problem for nuclei detection. Extensive experiments of multiple adaptation scenarios reveal that our method achieves state-of-the-art performance in cross-domain nuclei detection compared with existing domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxj发布了新的文献求助10
刚刚
liuqi完成签到,获得积分10
刚刚
烂漫臻完成签到,获得积分10
1秒前
orixero应助jio大洁采纳,获得10
1秒前
梨理栗完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
杜一完成签到,获得积分20
1秒前
1秒前
李健的小迷弟应助夏夏采纳,获得10
2秒前
flyfish完成签到,获得积分10
3秒前
哩哩哩哩哩完成签到 ,获得积分10
4秒前
4秒前
HHHH完成签到,获得积分10
4秒前
阿白发布了新的文献求助10
5秒前
暮暮发布了新的文献求助10
5秒前
小马甲应助呆萌的正豪采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
11秒前
ALLIN完成签到,获得积分20
11秒前
泡沫完成签到 ,获得积分10
11秒前
12秒前
赘婿应助大胆的问夏采纳,获得10
12秒前
阿卫发布了新的文献求助10
13秒前
时来运转发布了新的文献求助10
13秒前
科研通AI5应助wxj采纳,获得10
13秒前
科研通AI5应助wxj采纳,获得10
13秒前
搜集达人应助可耐的乐荷采纳,获得10
13秒前
13秒前
玩命的鹤完成签到 ,获得积分10
14秒前
456发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
LHL发布了新的文献求助10
16秒前
Hello应助文静的可仁采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831