Event-Based Distributed Set-Membership Estimation for Complex Networks Under Deception Attacks

计算机科学 估计员 节点(物理) 集合(抽象数据类型) 事件(粒子物理) 网络拓扑 数学优化 数学 工程类 计算机网络 量子力学 结构工程 统计 物理 程序设计语言
作者
Changzhen Hu,Sanbo Ding,Xiangpeng Xie
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3719-3729 被引量:10
标识
DOI:10.1109/tase.2023.3284448
摘要

This paper addresses the problem of event-based distributed set-membership estimation for complex networks with unknown but bounded (UBB) disturbances. To reflect the compromised data transmissions in cyber security, deception attacks are taken into consideration. Meanwhile, a novel estimation model is proposed against UBB disturbances. In order to schedule the signal transmissions between nodes and remote estimators, a novel decentralized dynamic periodic event-triggered mechanism (DPETM) with a time-varying threshold is developed for each node of the complex networks, which reduces the waste of communication resources and the complexity of computation. Thereafter, a series of distributed set-membership estimators are designed, whose parameters are explicitly determined in terms of the resolution of a particular linear matrix inequality (LMI) related to the information of the communication topology. An optimized ellipsoid estimation set is obtained by applying a recursive optimization algorithm. Finally, the simulation results are shown to demonstrate the viability of the proposed method. Note to Practitioners —This paper is motivated by set-membership state estimation problem of complex networks in practical missions, such as military, environment, industry, etc. The set-membership estimation of complex networks provides a reliable confidence region for each system node. Event-triggered control is an effective method for the design of set-membership estimator. But the common results require the systems to monitor the measurements point-to-point, which leads to the huge consumption of calculation and communication resources. For this reason, this paper originally extends the DPETM to the discrete-time version from the field of continuous-time systems. Meanwhile, this paper considers the deception attacks in communication channels, and the generic framework established earlier can tackle simultaneously sector-bounded nonlinearity, UBB disturbances, and deception attacks. The main difficulty of this paper lies in the analysis for the sawtooth constraint of periodic samplings. For this difficulty, we introduce a piecewise auxiliary function, which is similar with the loop-function in the field of continuous-time systems. Together with recursive optimization algorithm, the detailed analysis method is proposed for the reliable confidence regions of each set-membership estimator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李振博完成签到 ,获得积分10
刚刚
刚刚
璐璐完成签到 ,获得积分10
刚刚
哈哈学习学习噢完成签到,获得积分10
刚刚
1秒前
1秒前
TitoLi完成签到,获得积分20
1秒前
羊羊羊发布了新的文献求助10
2秒前
2秒前
2秒前
淡然元珊完成签到 ,获得积分10
3秒前
3秒前
自信的孱应助勤劳蜜蜂采纳,获得10
3秒前
Richard发布了新的文献求助10
3秒前
闫佳美发布了新的文献求助10
4秒前
whitebird发布了新的文献求助10
5秒前
羊羊羊完成签到,获得积分10
6秒前
我又不乱来完成签到,获得积分10
6秒前
jj发布了新的文献求助30
6秒前
绮丽关注了科研通微信公众号
7秒前
心灵美的抽屉完成签到,获得积分10
7秒前
内向迎波发布了新的文献求助10
7秒前
韩小花完成签到,获得积分10
7秒前
憨憨兔子发布了新的文献求助10
7秒前
8秒前
22发布了新的文献求助10
8秒前
8秒前
9秒前
爱听歌傲玉完成签到,获得积分10
9秒前
大气的懒羊羊完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
曾经晓亦完成签到 ,获得积分10
12秒前
13秒前
yueyue完成签到,获得积分10
14秒前
绮丽发布了新的文献求助10
15秒前
慕青应助科研王采纳,获得30
15秒前
敖江风云发布了新的文献求助10
16秒前
cheese发布了新的文献求助10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164706
求助须知:如何正确求助?哪些是违规求助? 3700027
关于积分的说明 11682393
捐赠科研通 3389467
什么是DOI,文献DOI怎么找? 1858851
邀请新用户注册赠送积分活动 919280
科研通“疑难数据库(出版商)”最低求助积分说明 831988