FADM-SLAM: a fast and accurate dynamic intelligent motion SLAM for autonomous robot exploration involving movable objects

人工智能 计算机视觉 同时定位和映射 计算机科学 光流 极线几何 特征(语言学) 单眼 分割 RGB颜色模型 运动估计 机器人 图像(数学) 移动机器人 语言学 哲学
作者
Qamar Ul Islam,Haidi Ibrahim,Pan Kok Chin,Kah Bin Lim,Mohd Zaid Abdullah
标识
DOI:10.1108/ria-11-2022-0269
摘要

Purpose Many popular simultaneous localization and mapping (SLAM) techniques have low accuracy, especially when localizing environments containing dynamically moving objects since their presence can potentially cause inaccurate data associations. To address this issue, the proposed FADM-SLAM system aims to improve the accuracy of SLAM techniques in environments containing dynamically moving objects. It uses a pipeline of feature-based approaches accompanied by sparse optical flow and multi-view geometry as constraints to achieve this goal. Design/methodology/approach FADM-SLAM, which works with monocular, stereo and RGB-D sensors, combines an instance segmentation network incorporating an intelligent motion detection strategy (iM) with an optical flow technique to improve location accuracy. The proposed AS-SLAM system comprises four principal modules, which are the optical flow mask and iM, the ego motion estimation, dynamic point detection and the feature-based extraction framework. Findings Experiment results using the publicly available RGBD-Bonn data set indicate that FADM-SLAM outperforms established visual SLAM systems in highly dynamic conditions. Originality/value In summary, the first module generates the indication of dynamic objects by using the optical flow and iM with geometric-wise segmentation, which is then used by the second module to compute the starting point of a posture. The third module, meanwhile, first searches for the dynamic feature points in the environment, and second, eliminates them from further processing. An algorithm based on epipolar constraints is implemented to do this. In this way, only the static feature points are retained, which are then fed to the fourth module for extracting important features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lu完成签到,获得积分10
刚刚
整箱发布了新的文献求助10
1秒前
JamesPei应助菲菲采纳,获得10
1秒前
桐桐应助wuyuhan采纳,获得10
1秒前
早起吃饱多运动完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
自由的读书人完成签到,获得积分10
2秒前
科研通AI6.1应助月白采纳,获得10
2秒前
carly发布了新的文献求助10
3秒前
机智的高山完成签到 ,获得积分10
3秒前
3秒前
lizhiqian2024发布了新的文献求助10
3秒前
小婷完成签到,获得积分10
3秒前
Hello应助LLL采纳,获得10
4秒前
骆一锅完成签到,获得积分20
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
8秒前
周大悦发布了新的文献求助20
9秒前
我是老大应助整箱采纳,获得10
9秒前
10秒前
缓缓面完成签到,获得积分10
11秒前
stac发布了新的文献求助10
11秒前
创希生物完成签到,获得积分10
11秒前
11秒前
獭祭鱼完成签到,获得积分10
12秒前
13秒前
13秒前
科研小白完成签到,获得积分10
13秒前
Jelavender完成签到,获得积分10
15秒前
15秒前
15秒前
念安发布了新的文献求助10
16秒前
16秒前
CM124应助777采纳,获得10
17秒前
Hobo1920完成签到,获得积分10
17秒前
Lmyznl发布了新的文献求助10
18秒前
不想做实验完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5811990
求助须知:如何正确求助?哪些是违规求助? 5901483
关于积分的说明 15533250
捐赠科研通 4935873
什么是DOI,文献DOI怎么找? 2658110
邀请新用户注册赠送积分活动 1604382
关于科研通互助平台的介绍 1559434