Contrastive learning in protein language space predicts interactions between drugs and protein targets

生物信息学 计算机科学 药物发现 可扩展性 计算生物学 化学空间 蛋白质组 嵌入 人工智能 功能(生物学) 诱饵 药物靶点 机器学习 生物信息学 生物 基因 药理学 受体 数据库 遗传学
作者
Rohit Singh,Samuel Sledzieski,Bryan D. Bryson,Lenore Cowen,Bonnie Berger
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (24) 被引量:53
标识
DOI:10.1073/pnas.2220778120
摘要

Sequence-based prediction of drug–target interactions has the potential to accelerate drug discovery by complementing experimental screens. Such computational prediction needs to be generalizable and scalable while remaining sensitive to subtle variations in the inputs. However, current computational techniques fail to simultaneously meet these goals, often sacrificing performance of one to achieve the others. We develop a deep learning model, ConPLex, successfully leveraging the advances in pretrained protein language models (“PLex”) and employing a protein-anchored contrastive coembedding (“Con”) to outperform state-of-the-art approaches. ConPLex achieves high accuracy, broad adaptivity to unseen data, and specificity against decoy compounds. It makes predictions of binding based on the distance between learned representations, enabling predictions at the scale of massive compound libraries and the human proteome. Experimental testing of 19 kinase-drug interaction predictions validated 12 interactions, including four with subnanomolar affinity, plus a strongly binding EPHB1 inhibitor ( K D = 1.3 nM). Furthermore, ConPLex embeddings are interpretable, which enables us to visualize the drug–target embedding space and use embeddings to characterize the function of human cell-surface proteins. We anticipate that ConPLex will facilitate efficient drug discovery by making highly sensitive in silico drug screening feasible at the genome scale. ConPLex is available open source at https://ConPLex.csail.mit.edu .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0Miles发布了新的文献求助10
1秒前
TRY发布了新的文献求助10
1秒前
欣喜的冥王星完成签到,获得积分20
1秒前
小莳发布了新的文献求助10
2秒前
2秒前
2秒前
Kirito应助彩色方盒采纳,获得10
3秒前
4秒前
善学以致用应助0Miles采纳,获得10
6秒前
vicissitude发布了新的文献求助10
6秒前
7秒前
10秒前
凉拌黄瓜完成签到,获得积分10
10秒前
10秒前
shinn发布了新的文献求助10
10秒前
搞怪柔完成签到,获得积分10
10秒前
快快毕业完成签到 ,获得积分10
12秒前
王加通完成签到,获得积分10
13秒前
大有阳光发布了新的文献求助10
13秒前
王雪完成签到,获得积分10
14秒前
15秒前
谨慎秋珊完成签到 ,获得积分10
15秒前
281911480完成签到,获得积分10
15秒前
自然松完成签到,获得积分10
15秒前
凉拌黄瓜发布了新的文献求助30
15秒前
化羽归尘完成签到,获得积分10
16秒前
尽舜尧完成签到,获得积分10
18秒前
18秒前
19秒前
吃葡萄不吐完成签到,获得积分10
19秒前
岁岁完成签到 ,获得积分10
19秒前
19秒前
shinn完成签到,获得积分10
20秒前
大有阳光完成签到,获得积分10
20秒前
默默的剑封完成签到,获得积分10
20秒前
AAA完成签到,获得积分10
21秒前
小白鞋完成签到 ,获得积分10
22秒前
快快毕业发布了新的文献求助10
24秒前
单身的溪流完成签到 ,获得积分10
24秒前
姜酱江酱发布了新的文献求助10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846158
求助须知:如何正确求助?哪些是违规求助? 3388556
关于积分的说明 10553391
捐赠科研通 3109110
什么是DOI,文献DOI怎么找? 1713334
邀请新用户注册赠送积分活动 824732
科研通“疑难数据库(出版商)”最低求助积分说明 774982