亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

P2T2: A physically-primed deep-neural-network approach for robust

计算机科学 稳健性(进化) 人工智能 模式识别(心理学) 算法 生物化学 基因 化学
作者
Hadas Ben-Atya,Moti Freiman
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:107: 102240-102240
标识
DOI:10.1016/j.compmedimag.2023.102240
摘要

Estimating T2 relaxation time distributions from multi-echo T2-weighted MRI (T2W) data can provide valuable biomarkers for assessing inflammation, demyelination, edema, and cartilage composition in various pathologies, including neurodegenerative disorders, osteoarthritis, and tumors. Deep neural network (DNN) based methods have been proposed to address the complex inverse problem of estimating T2 distributions from MRI data, but they are not yet robust enough for clinical data with low Signal-to-Noise ratio (SNR) and are highly sensitive to distribution shifts such as variations in echo-times (TE) used during acquisition. Consequently, their application is hindered in clinical practice and large-scale multi-institutional trials with heterogeneous acquisition protocols. We propose a physically-primed DNN approach, called P2T2, that incorporates the signal decay forward model in addition to the MRI signal into the DNN architecture to improve the accuracy and robustness of T2 distribution estimation. We evaluated our P2T2 model in comparison to both DNN-based methods and classical methods for T2 distribution estimation using 1D and 2D numerical simulations along with clinical data. Our model improved the baseline model’s accuracy for low SNR levels (SNR<80) which are common in the clinical setting. Further, our model achieved a ∼35% improvement in robustness against distribution shifts in the acquisition process compared to previously proposed DNN models. Finally, Our P2T2 model produces the most detailed Myelin-Water fraction maps compared to baseline approaches when applied to real human MRI data. Our P2T2 model offers a reliable and precise means of estimating T2 distributions from MRI data and shows promise for use in large-scale multi-institutional trials with heterogeneous acquisition protocols. Our source code is available at: https://github.com/Hben-atya/P2T2-Robust-T2-estimation.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
20秒前
汶南完成签到 ,获得积分10
43秒前
斯寜应助budingman采纳,获得10
50秒前
斯寜应助budingman采纳,获得10
50秒前
斯寜应助budingman采纳,获得10
50秒前
loen完成签到,获得积分10
1分钟前
2分钟前
herococa完成签到,获得积分10
2分钟前
2分钟前
3分钟前
yanxi发布了新的文献求助10
3分钟前
小芭乐完成签到 ,获得积分10
3分钟前
yanxi完成签到,获得积分10
3分钟前
4分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Charlie完成签到 ,获得积分10
5分钟前
5分钟前
欣心发布了新的文献求助10
5分钟前
月亮完成签到 ,获得积分10
5分钟前
欣心完成签到,获得积分20
6分钟前
小白菜完成签到,获得积分10
7分钟前
7分钟前
7分钟前
李爱国应助科研通管家采纳,获得10
8分钟前
江流有声完成签到 ,获得积分10
8分钟前
斯文麦片完成签到 ,获得积分10
8分钟前
8分钟前
结实初翠发布了新的文献求助10
8分钟前
完美世界应助帅123采纳,获得10
8分钟前
8分钟前
j1kxm完成签到,获得积分10
8分钟前
8分钟前
舒服的觅夏完成签到,获得积分10
8分钟前
冬去春来完成签到 ,获得积分10
8分钟前
帅123发布了新的文献求助10
8分钟前
8分钟前
KINGAZX完成签到 ,获得积分10
8分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3343971
关于积分的说明 10318254
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323