Ranking-Based Color Constancy With Limited Training Samples

计算机科学 人工智能 排名(信息检索) 颜色恒定性 卷积神经网络 机器学习 秩(图论) 模式识别(心理学) 约束(计算机辅助设计) 学习排名 深度学习 图像(数学) 数学 几何学 组合数学
作者
Bing Li,Haina Qin,Weihua Xiong,Yangxi Li,Songhe Feng,Weiming Hu,Stephen J. Maybank
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (10): 12304-12320 被引量:7
标识
DOI:10.1109/tpami.2023.3278832
摘要

Computational color constancy is an important component of Image Signal Processors (ISP) for white balancing in many imaging devices. Recently, deep convolutional neural networks (CNN) have been introduced for color constancy. They achieve prominent performance improvements comparing with those statistics or shallow learning-based methods. However, the need for a large number of training samples, a high computational cost and a huge model size make CNN-based methods unsuitable for deployment on low-resource ISPs for real-time applications. In order to overcome these limitations and to achieve comparable performance to CNN-based methods, an efficient method is defined for selecting the optimal simple statistics-based method (SM) for each image. To this end, we propose a novel ranking-based color constancy method (RCC) that formulates the selection of the optimal SM method as a label ranking problem. RCC designs a specific ranking loss function, and uses a low rank constraint to control the model complexity and a grouped sparse constraint for feature selection. Finally, we apply the RCC model to predict the order of the candidate SM methods for a test image, and then estimate its illumination using the predicted optimal SM method (or fusing the results estimated by the top k SM methods). Comprehensive experiment results show that the proposed RCC outperforms nearly all the shallow learning-based methods and achieves comparable performance to (sometimes even better performance than) deep CNN-based methods with only 1/2000 of the model size and training time. RCC also shows good robustness to limited training samples and good generalization crossing cameras. Furthermore, to remove the dependence on the ground truth illumination, we extend RCC to obtain a novel ranking-based method without ground truth illumination (RCC_NO) that learns the ranking model using simple partial binary preference annotations provided by untrained annotators rather than experts. RCC_NO also achieves better performance than the SM methods and most shallow learning-based methods with low costs of sample collection and illumination measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
MaRin发布了新的文献求助10
1秒前
1秒前
罗罗应助科研通管家采纳,获得80
1秒前
Anastasia完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
优雅老六应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
罗斯发布了新的文献求助10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
leaolf应助Stanford采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
沉默火发布了新的文献求助10
2秒前
7777135发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
lemon应助星球杯采纳,获得50
3秒前
woodheart发布了新的文献求助10
4秒前
4秒前
小毛线完成签到,获得积分10
4秒前
兴奋的如松完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
核糖体完成签到 ,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2025山东省直机关硬笔书法展示活动获奖名单 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4939546
求助须知:如何正确求助?哪些是违规求助? 4205965
关于积分的说明 13072479
捐赠科研通 3984403
什么是DOI,文献DOI怎么找? 2181682
邀请新用户注册赠送积分活动 1197393
关于科研通互助平台的介绍 1109635