亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human-computer interaction based health diagnostics using ResNet34 for tongue image classification

舌头 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 特征提取 人工神经网络 上下文图像分类 特征(语言学) 计算机视觉 图像(数学) 医学 病理 语言学 哲学
作者
Qingbin Zhuang,Senzhong Gan,Liangyu Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107096-107096 被引量:40
标识
DOI:10.1016/j.cmpb.2022.107096
摘要

Tongue diagnosis is one of the characteristics of traditional Chinese medicine (TCM), but traditional tongue diagnosis is affected by many factors, and its differential diagnosis results are not widely recognized. The appearance of tongue diagnosis instruments is the product of the modernization of tongue diagnosis, and it has standard and objective advantages in clinical practice. In this study, based on standard tongue images, a tongue image dataset and detection model were constructed. And based on the deep learning convolutional neural network (CNN) algorithm and visual question answering technology, a human-computer interaction intelligent health detector for tongue image recognition is constructed.In this research, 1420 tongue images were collected. After screening, experts judged them, and annotated the tongue images to form tongue image datasets. Then the artificial intelligence network framework based on deep learning convolutional neural network (CNN), that is, ResNet34, is applied to this dataset to automatically extract image features and realize tongue images classification. Finally, the VGG16 network framework is applied to the dataset to compare the classification model and compare with the classification effect.In this paper, relevant datasets were formed by collating the tongue images collected by annotation, which verified that the ResNet34 architecture could better perform the task of tooth mark and tongue feature recognition. Compared with similar learning tasks in existing studies, the accuracy of the teeth-printed tongue recognition model proposed in this study is more than 10% higher, which indicates that the CNN algorithm can distinguish teeth-printed tongue more accurately and effectively. At the same time, using datasets and models combined with visual question and answer technology, an AI health detector for TCM tongue image identification is designed, which can make health assessments and give suggestions to users.This study adopts a convolutional neural network model based on deep learning, which can reduce the extraction of tongue features more quickly and conveniently. At the same time, the model architecture has excellent performance and strong generalization ability and is more accurate in judging users' health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
50秒前
星沐易发布了新的文献求助80
55秒前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
Allright发布了新的文献求助10
1分钟前
2分钟前
里昂义务发布了新的文献求助10
2分钟前
木头完成签到,获得积分10
2分钟前
科研通AI2S应助Allright采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
阔达棉花糖完成签到 ,获得积分10
3分钟前
123完成签到,获得积分10
4分钟前
123发布了新的文献求助10
4分钟前
彩虹儿应助123采纳,获得10
4分钟前
poser完成签到,获得积分10
4分钟前
4分钟前
sharotju发布了新的文献求助20
4分钟前
4分钟前
科目三应助sharotju采纳,获得10
4分钟前
丁丁发布了新的文献求助10
4分钟前
hugeyoung完成签到,获得积分10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
6分钟前
yuanquaner发布了新的文献求助10
6分钟前
yuanquaner完成签到,获得积分10
6分钟前
Ivan应助sino-ft采纳,获得10
6分钟前
小西完成签到 ,获得积分10
6分钟前
浮游应助科研通管家采纳,获得10
7分钟前
Sunny完成签到,获得积分10
7分钟前
严冰蝶完成签到 ,获得积分10
8分钟前
9分钟前
殷勤的涵梅完成签到 ,获得积分10
9分钟前
浮游应助科研通管家采纳,获得10
11分钟前
上官若男应助喜上梅梢采纳,获得10
11分钟前
田様应助健明采纳,获得30
11分钟前
我行完成签到 ,获得积分10
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541068
求助须知:如何正确求助?哪些是违规求助? 3974729
关于积分的说明 12310835
捐赠科研通 3642020
什么是DOI,文献DOI怎么找? 2005557
邀请新用户注册赠送积分活动 1041003
科研通“疑难数据库(出版商)”最低求助积分说明 930156