毒物动力学
运输机
肾功能
肾脏疾病
全氟辛酸
药理学
肾
有机阴离子转运蛋白1
基于生理学的药代动力学模型
人口
医学
生物
药代动力学
化学
内科学
环境卫生
生物化学
基因
作者
Shan Niu,Yuexin Cao,Ruiwen Chen,Megha Bedi,Alison P. Sanders,Alan Ducatman,Carla A. Ng
摘要
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and have been shown to cause various adverse health impacts. In animals, sex- and species-specific differences in PFAS elimination half-lives have been linked to the activity of kidney transporters. However, PFAS molecular interactions with kidney transporters are still not fully understood. Moreover, the impact of kidney disease on PFAS elimination remains unclear.This state-of-the-science review integrated current knowledge to assess how changes in kidney function and transporter expression from health to disease could affect PFAS toxicokinetics and identified priority research gaps that should be addressed to advance knowledge.We searched for studies that measured PFAS uptake by kidney transporters, quantified transporter-level changes associated with kidney disease status, and developed PFAS pharmacokinetic models. We then used two databases to identify untested kidney transporters that have the potential for PFAS transport based on their endogenous substrates. Finally, we used an existing pharmacokinetic model for perfluorooctanoic acid (PFOA) in male rats to explore the influence of transporter expression levels, glomerular filtration rate (GFR), and serum albumin on serum half-lives.The literature search identified nine human and eight rat kidney transporters that were previously investigated for their ability to transport PFAS, as well as seven human and three rat transporters that were confirmed to transport specific PFAS. We proposed a candidate list of seven untested kidney transporters with the potential for PFAS transport. Model results indicated PFOA toxicokinetics were more influenced by changes in GFR than in transporter expression.Studies on additional transporters, particularly efflux transporters, and on more PFAS, especially current-use PFAS, are needed to better cover the role of transporters across the PFAS class. Remaining research gaps in transporter expression changes in specific kidney disease states could limit the effectiveness of risk assessment and prevent identification of vulnerable populations. https://doi.org/10.1289/EHP11885.
科研通智能强力驱动
Strongly Powered by AbleSci AI