Novel Proteoform Discovery by Precise Semi-De Novo Sequencing of Novel Junction Peptides

计算生物学 DNA测序 外显子 RNA剪接 选择性拼接 基因 内含子 化学 遗传学 生物 核糖核酸
作者
Cuitong He,Catherine C. L. Wong
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (28): 10610-10617 被引量:2
标识
DOI:10.1021/acs.analchem.3c00870
摘要

Alternative splicing allows a small number of human genes to encode large amounts of proteoforms that play essential roles in normal and disease physiology. Some low-abundance proteoforms may remain undiscovered due to limited detection and analysis capabilities. Peptides coencoded by novel exons and annotated exons separated by introns are called novel junction peptides, which are the key to identifying novel proteoforms. Traditional de novo sequencing does not take into account the specificity in the composition of the novel junction peptide and is therefore not as accurate. We first developed a novel de novo sequencing algorithm, CNovo, which outperformed the mainstream PEAKS and Novor in all six test sets. We then built on CNovo to develop a semi-de novo sequencing algorithm, SpliceNovo, specifically for identifying novel junction peptides. SpliceNovo identifies junction peptides with much higher accuracy than CNovo, CJunction, PEAKS, and Novor. Of course, it is also possible to replace the built-in CNovo in SpliceNovo with other more accurate de novo sequencing algorithms to further improve its performance. We also successfully identified and validated two novel proteoforms of the human EIF4G1 and ELAVL1 genes by SpliceNovo. Our results significantly improve the ability to discover novel proteoforms through de novo sequencing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
丫丫完成签到 ,获得积分10
2秒前
yznfly应助YXH采纳,获得50
3秒前
ZZ完成签到,获得积分10
4秒前
麦田稻草人完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
8秒前
9秒前
10秒前
spcwlh完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
祭礼之龙完成签到,获得积分10
15秒前
15秒前
nininnn发布了新的文献求助10
15秒前
eleanor发布了新的文献求助30
15秒前
15秒前
酷炫的发带完成签到,获得积分10
15秒前
丰富的乌冬面应助yexu845采纳,获得10
16秒前
芽芽鸭发布了新的文献求助10
16秒前
17秒前
猪猪hero发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
huegeeee完成签到,获得积分10
20秒前
20秒前
21秒前
Frank应助vvvvvvvvvvvvv采纳,获得10
21秒前
Cynthia完成签到 ,获得积分0
21秒前
维尼完成签到,获得积分10
22秒前
猪猪hero发布了新的文献求助10
22秒前
hu完成签到,获得积分10
22秒前
吃元宵完成签到,获得积分10
23秒前
甜甜发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556401
求助须知:如何正确求助?哪些是违规求助? 4640903
关于积分的说明 14663795
捐赠科研通 4582989
什么是DOI,文献DOI怎么找? 2513798
邀请新用户注册赠送积分活动 1488319
关于科研通互助平台的介绍 1459064