清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Diffusion MRI-based connectomics features improve the noninvasive prediction of H3K27M mutation in brainstem gliomas

连接组学 逻辑回归 判别式 医学 Lasso(编程语言) 连接体 磁共振弥散成像 多项式logistic回归 人工智能 磁共振成像 计算机科学 机器学习 放射科 内科学 生物 神经科学 功能连接 万维网
作者
Ne Yang,Xiong Xiao,Guocan Gu,Xianyu Wang,Xinran Zhang,Yi Wang,Changcun Pan,Peng Zhang,Longfei Ma,Liwei Zhang,Hongen Liao
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:186: 109789-109789 被引量:2
标识
DOI:10.1016/j.radonc.2023.109789
摘要

Purpose To establish an individualized predictive model to identify patients with brainstem gliomas (BSGs) at high risk of H3K27M mutation, with the inclusion of brain structural connectivity analysis based on diffusion MRI (dMRI). Materials and Methods A primary cohort of 133 patients with BSGs (80 H3K27M-mutant) were retrospectively included. All patients underwent preoperative conventional MRI and dMRI. Tumor radiomics features were extracted from conventional MRI, while two kinds of global connectomics features were extracted from dMRI. A machine learning-based individualized H3K27M mutation prediction model combining radiomics and connectomics features was generated with a nested cross validation strategy. Relief algorithm and SVM method were used in each outer LOOCV loop to select the most robust and discriminative features. Additionally, two predictive signatures were established using the LASSO method, and simplified logistic models were built using multivariable logistic regression analysis. An independent cohort of 27 patients was used to validate the best model. Results 35 tumor-related radiomics features, 51 topological properties of brain structural connectivity networks, and 11 microstructural measures along white matter tracts were selected to construct a machine learning-based H3K27M mutation prediction model, which achieved an AUC of 0.9136 in the independent validation set. Radiomics- and connectomics-based signatures were generated and simplified combined logistic model was built, upon which derived nomograph achieved an AUC of 0.8827 in the validation cohort. Conclusion dMRI is valuable in predicting H3K27M mutation in BSGs, and connectomics analysis is a promising approach. Combining multiple MRI sequences and clinical features, the established models have good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxyinhefeng完成签到 ,获得积分10
9秒前
Shrimp完成签到 ,获得积分10
33秒前
xiaosui完成签到 ,获得积分10
38秒前
LZQ发布了新的文献求助10
42秒前
1分钟前
天边发布了新的文献求助10
1分钟前
1分钟前
GG完成签到 ,获得积分10
1分钟前
WTaMi完成签到 ,获得积分10
1分钟前
Owllight发布了新的文献求助30
1分钟前
Galri完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
甜甜友容完成签到,获得积分10
1分钟前
czj完成签到 ,获得积分10
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
章鱼完成签到,获得积分10
2分钟前
钱念波发布了新的文献求助10
2分钟前
大个应助找文献的天才狗采纳,获得10
2分钟前
天边完成签到 ,获得积分10
2分钟前
科研阿白完成签到 ,获得积分10
3分钟前
数学情缘完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
shouyu29应助科研通管家采纳,获得10
3分钟前
FFFFFF完成签到 ,获得积分10
3分钟前
细心的如天完成签到 ,获得积分0
3分钟前
3分钟前
hover发布了新的文献求助10
3分钟前
钱念波发布了新的文献求助10
4分钟前
轩辕中蓝完成签到 ,获得积分10
4分钟前
毕葛完成签到 ,获得积分0
4分钟前
hover完成签到,获得积分10
4分钟前
稳重的秋天完成签到,获得积分10
4分钟前
MchemG应助钱念波采纳,获得10
4分钟前
荀万声完成签到,获得积分10
4分钟前
HY完成签到 ,获得积分10
4分钟前
曲夜白完成签到 ,获得积分10
5分钟前
5分钟前
lanxinge完成签到 ,获得积分20
5分钟前
科研通AI2S应助钱念波采纳,获得10
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798514
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318410
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679695
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340