数学
迭代函数系统
特征向量
分形
卷积(计算机科学)
伯努利原理
纯数学
谢尔宾斯基三角
类型(生物学)
迭代函数
数学分析
薛定谔猫
无穷
物理
航空航天工程
工程类
机器学习
生物
量子力学
人工神经网络
计算机科学
生态学
摘要
We study an asymptotic formula for the number of negative eigenvalues of Schrödinger operators on unbounded fractal spaces, which admit a cellular decomposition. We first give some sufficient conditions for Weyl-type asymptotic formula to hold. Second, we verify these conditions for the infinite blowup of Sierpiński gasket and unbounded generalized Sierpiński carpets. Finally, we demonstrate how the result can be applied to the infinite blowup of certain fractals associated with iterated function systems with overlaps, including those defining the classical infinite Bernoulli convolution with golden ratio.
科研通智能强力驱动
Strongly Powered by AbleSci AI