已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A method to investigate sterilization processes and the bacterial inactivation resolved in time and space

灭菌(经济) 计算流体力学 自然对流 热的 机械 材料科学 化学 环境科学 核工程 热力学 传热 物理 货币经济学 经济 外汇市场 工程类 外汇
作者
Manuel Feurhuber,Thomas Taupitz,Frank Mueller,Carsten Frank,Christoph Hochenauer,Valentin Schwarz
出处
期刊:Pda Journal of Pharmaceutical Science and Technology [Parenteral Drug Association]
卷期号:78 (3): 331-347
标识
DOI:10.5731/pdajpst.2022.012771
摘要

In this study, a Computational Fluid Dynamics (CFD) model was developed to predict all relevant phenomena occurring during a moist heat sterilization process at a high level of temporal and spatial resolution. The developed CFD model was used to simulate the distribution of, e.g., pressure, temperature and residual air within a large-scale industrial steam autoclave (multiphase flow models) which was not published until now. Moreover, the thermodynamic behavior and distribution of fluids and temperatures inside the sterilization load was simulated which were verified with measurements. Based on the obtained sterilization temperature profiles in connection with the sterilization environment (e.g., NCGs, natural convection), the bacterial inactivation could be simulated. A complete moist heat sterilization process was simulated, including all relevant phenomena inside an autoclave chamber and a Peritoneal Dialysis Bag System (PDBS), which represents a complex sterilization item. To verify the simulation results, simulated pressures and temperatures were compared with measurement data for both the autoclave chamber and the PDBS. The results show that the simulated and measured values were in excellent accordance. By using the novel CFD model, the distribution of steam and residual air inside the autoclave chamber, as well as the natural convection inside the sterilization load, could be precisely predicted. To predict the inactivation of Geobacillus stearothermophilus inside different moist heat environments, the CFD model was extended with bacterial inactivation kinetics based on measurement data. The simulation results clearly indicate that our developed CFD model can be used to predict the inactivation kinetics of bacteria, depending on the sterilization temperature profile of the sterilization process as well as the moist heat sterilization environment, and to resolve the kinetics in time and space. Therefore, the developed CFD model represents a powerful tool that might be used in the future to predict, e.g., ″worst case″ locations for any given autoclave and sterilization load or any other relevant process parameter, enabling the operator to develop an effective sterilization process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮完成签到 ,获得积分10
刚刚
潇洒青曼完成签到,获得积分20
1秒前
Yingkun_Xu完成签到,获得积分10
6秒前
m1nt完成签到,获得积分0
7秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
Condor完成签到,获得积分10
11秒前
镜花水月完成签到,获得积分10
13秒前
16秒前
tutu完成签到,获得积分10
21秒前
流沙无言完成签到 ,获得积分10
21秒前
沉默白桃完成签到 ,获得积分10
22秒前
jinhaoqian完成签到 ,获得积分20
22秒前
lqh完成签到,获得积分10
22秒前
24秒前
31秒前
充电宝应助枫树狐狸采纳,获得10
35秒前
41秒前
娜娜子完成签到 ,获得积分10
43秒前
zhuang发布了新的文献求助10
45秒前
LILYpig完成签到 ,获得积分10
47秒前
苏桑焉完成签到 ,获得积分10
51秒前
清爽的冬寒完成签到 ,获得积分10
52秒前
shuangshuang完成签到,获得积分10
54秒前
云上人完成签到 ,获得积分10
57秒前
57秒前
战神林北完成签到,获得积分10
1分钟前
sifan完成签到 ,获得积分10
1分钟前
1分钟前
研友_ZlvGdL完成签到,获得积分20
1分钟前
11发布了新的文献求助50
1分钟前
李小强完成签到,获得积分10
1分钟前
佐敦完成签到,获得积分10
1分钟前
从容松弛完成签到 ,获得积分10
1分钟前
宅宅完成签到 ,获得积分10
1分钟前
DreamRunner0410完成签到 ,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123962
求助须知:如何正确求助?哪些是违规求助? 3661822
关于积分的说明 11590008
捐赠科研通 3362392
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827823