Radiomics and artificial intelligence for soft-tissue sarcomas: Current status and perspectives

无线电技术 医学 卷积神经网络 机器学习 人工智能 磁共振成像 放射科 医学物理学 计算机科学
作者
Amandine Crombé,Paolo Spinnato,Antoîne Italiano,Hervé J. Brisse,A. Feydy,David Fadli,Michèle Kind
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:104 (12): 567-583 被引量:14
标识
DOI:10.1016/j.diii.2023.09.005
摘要

This article proposes a summary of the current status of the research regarding the use of radiomics and artificial intelligence to improve the radiological assessment of patients with soft tissue sarcomas (STS), a heterogeneous group of rare and ubiquitous mesenchymal malignancies. After a first part explaining the principle of radiomics approaches, from raw image post-processing to extraction of radiomics features mined with unsupervised and supervised machine-learning algorithms, and the current research involving deep learning algorithms in STS, especially convolutional neural networks, this review details their main research developments since the formalisation of ‘radiomics’ in oncologic imaging in 2010. This review focuses on CT and MRI and does not involve ultrasonography. Radiomics and deep radiomics have been successfully applied to develop predictive models to discriminate between benign soft-tissue tumors and STS, to predict the histologic grade (i.e., the most important prognostic marker of STS), the response to neoadjuvant chemotherapy and/or radiotherapy, and the patients’ survivals and probability for presenting distant metastases. The main findings, limitations and expectations are discussed for each of these outcomes. Overall, after a first decade of publications emphasizing the potential of radiomics through retrospective proof-of-concept studies, almost all positive but with heterogeneous and often non-replicable methods, radiomics is now at a turning point in order to provide robust demonstrations of its clinical impact through open-science, independent databases, and application of good and standardized practices in radiomics such as those provided by the Image Biomarker Standardization Initiative, without forgetting innovative research paths involving other ‘-omics’ data to better understand the relationships between imaging of STS, gene-expression profiles and tumor microenvironment.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixixi完成签到 ,获得积分10
2秒前
Xuz完成签到 ,获得积分10
9秒前
jun完成签到 ,获得积分10
11秒前
悄悄拔尖儿完成签到 ,获得积分10
41秒前
激流勇进wb完成签到 ,获得积分10
42秒前
GankhuyagJavzan完成签到,获得积分10
43秒前
加油杨完成签到 ,获得积分10
45秒前
纯情的天奇完成签到 ,获得积分10
49秒前
sdbz001完成签到,获得积分0
51秒前
在水一方完成签到 ,获得积分10
52秒前
zmm完成签到 ,获得积分10
53秒前
夕阳下仰望完成签到 ,获得积分10
53秒前
石头完成签到,获得积分10
55秒前
林大侠完成签到,获得积分10
56秒前
56秒前
兴奋以蓝完成签到,获得积分10
58秒前
小垃圾10号完成签到,获得积分10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
fjhsg25发布了新的文献求助10
1分钟前
盐焗小星球完成签到 ,获得积分10
1分钟前
Kelsey完成签到 ,获得积分10
1分钟前
南浔完成签到 ,获得积分10
1分钟前
深情海秋完成签到,获得积分10
1分钟前
1分钟前
天真依玉完成签到,获得积分10
1分钟前
serenity711完成签到 ,获得积分10
1分钟前
大大大忽悠完成签到 ,获得积分10
1分钟前
xu完成签到 ,获得积分10
1分钟前
苏兜兜完成签到,获得积分10
1分钟前
纪言七许完成签到 ,获得积分10
1分钟前
zuozuo完成签到,获得积分10
1分钟前
Adhklu完成签到 ,获得积分10
1分钟前
在水一方应助钮祜禄萱采纳,获得10
1分钟前
1分钟前
hub-pubmed发布了新的文献求助10
1分钟前
笑对人生完成签到 ,获得积分10
1分钟前
腼腆的海豚完成签到 ,获得积分10
1分钟前
一苇以航发布了新的文献求助10
1分钟前
onevip完成签到,获得积分0
1分钟前
i2stay完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5881196
求助须知:如何正确求助?哪些是违规求助? 6584636
关于积分的说明 15690930
捐赠科研通 5001280
什么是DOI,文献DOI怎么找? 2694660
邀请新用户注册赠送积分活动 1636981
关于科研通互助平台的介绍 1593801