Radiomics and artificial intelligence for soft-tissue sarcomas: Current status and perspectives

无线电技术 医学 卷积神经网络 机器学习 人工智能 磁共振成像 放射科 医学物理学 计算机科学
作者
Amandine Crombé,Paolo Spinnato,Antoîne Italiano,Hervé J. Brisse,A. Feydy,David Fadli,Michèle Kind
出处
期刊:Diagnostic and interventional imaging [Elsevier BV]
卷期号:104 (12): 567-583 被引量:14
标识
DOI:10.1016/j.diii.2023.09.005
摘要

This article proposes a summary of the current status of the research regarding the use of radiomics and artificial intelligence to improve the radiological assessment of patients with soft tissue sarcomas (STS), a heterogeneous group of rare and ubiquitous mesenchymal malignancies. After a first part explaining the principle of radiomics approaches, from raw image post-processing to extraction of radiomics features mined with unsupervised and supervised machine-learning algorithms, and the current research involving deep learning algorithms in STS, especially convolutional neural networks, this review details their main research developments since the formalisation of ‘radiomics’ in oncologic imaging in 2010. This review focuses on CT and MRI and does not involve ultrasonography. Radiomics and deep radiomics have been successfully applied to develop predictive models to discriminate between benign soft-tissue tumors and STS, to predict the histologic grade (i.e., the most important prognostic marker of STS), the response to neoadjuvant chemotherapy and/or radiotherapy, and the patients’ survivals and probability for presenting distant metastases. The main findings, limitations and expectations are discussed for each of these outcomes. Overall, after a first decade of publications emphasizing the potential of radiomics through retrospective proof-of-concept studies, almost all positive but with heterogeneous and often non-replicable methods, radiomics is now at a turning point in order to provide robust demonstrations of its clinical impact through open-science, independent databases, and application of good and standardized practices in radiomics such as those provided by the Image Biomarker Standardization Initiative, without forgetting innovative research paths involving other ‘-omics’ data to better understand the relationships between imaging of STS, gene-expression profiles and tumor microenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈小葵发布了新的文献求助10
刚刚
阿晓晓完成签到,获得积分10
4秒前
nianxunxi完成签到,获得积分10
4秒前
orange完成签到,获得积分10
5秒前
领导范儿应助风铃鸟采纳,获得10
5秒前
QQ糖完成签到 ,获得积分10
6秒前
星辰大海应助沈小葵采纳,获得10
7秒前
充电宝应助欢呼小蚂蚁采纳,获得10
10秒前
10秒前
yyyyyqy完成签到,获得积分10
10秒前
眼睛大的盼海完成签到,获得积分10
13秒前
13秒前
YST完成签到,获得积分10
15秒前
16秒前
18秒前
995发布了新的文献求助10
18秒前
xiao茗完成签到,获得积分10
19秒前
20秒前
shenqian完成签到,获得积分10
22秒前
爆米花应助995采纳,获得10
23秒前
fly完成签到 ,获得积分10
23秒前
23秒前
乐乐应助gjh采纳,获得10
23秒前
Aliks发布了新的文献求助10
24秒前
爆米花应助aaaa采纳,获得10
27秒前
若雨凌风发布了新的文献求助10
28秒前
紧张的似狮完成签到 ,获得积分10
28秒前
30秒前
迷路的书蝶完成签到 ,获得积分10
30秒前
韩hqf驳回了赘婿应助
31秒前
37秒前
自然水风完成签到 ,获得积分10
37秒前
38秒前
Akim应助xdy1990采纳,获得10
38秒前
JamesPei应助jyyg采纳,获得30
39秒前
坦率的如南完成签到,获得积分20
39秒前
40秒前
浙江嘉兴完成签到,获得积分10
41秒前
Freya完成签到,获得积分10
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783020
求助须知:如何正确求助?哪些是违规求助? 3328384
关于积分的说明 10236158
捐赠科研通 3043496
什么是DOI,文献DOI怎么找? 1670517
邀请新用户注册赠送积分活动 799751
科研通“疑难数据库(出版商)”最低求助积分说明 759119