亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Freshness prediction of modified atmosphere packaging lamb meat based on digital images from mobile portable devices

卷积神经网络 计算机科学 支持向量机 人工智能 人工神经网络 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Peilin Jin,Zhigang Li,Xiaoshuan Zhang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (12) 被引量:8
标识
DOI:10.1111/jfpe.14444
摘要

Abstract This study aimed to quickly assess lamb meat freshness using smartphones under various modified atmosphere packaging and storage times (0–10 days). Lamb meat images were collected across different periods and packaging types (50% O 2 + 40% CO 2 + 10% N 2 ; 70% O 2 + 20% CO 2 + 10% N 2 ; air). Key color features were extracted, and significant differences in five color features were identified. Three distinct color feature combinations were chosen for models: support vector regression (SVR), genetic algorithm‐back propagation (GA‐BP) neural network, and convolutional neural network (CNN). Results showed SVR models with varied color feature inputs outperformed BP and CNN models. The SVR model with 12 input features yielded the best results, enabling effective spoilage level analysis of lamb meat under different storage times. This work establishes a foundation for future smartphone app development, utilizing Raspberry Pi hardware to evaluate lamb meat freshness under diverse storage conditions. Practical applications This study introduces a cell phone‐based method to rapidly determine lamb spoilage in air conditioning packages during different storage times. Using cell phone images, we collected data on lamb samples stored for 0–10 days under three packaging conditions. We extracted significant color features and selected three combinations as inputs for prediction models: SVR, GA‐BP neural network, and CNN. The SVR model with 12 feature values demonstrated the best performance. This research lays the foundation for a cell phone application based on Raspberry Pi hardware, enabling users to assess lamb freshness in various storage conditions. The potential benefits include efficient quality control in the food industry, increased consumer confidence, and improved preservation of lamb products through optimized storage and packaging. Overall, this study contributes to food quality evaluation and provides practical applications for professionals and consumers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JoeyJin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
MOFS完成签到,获得积分10
17秒前
19秒前
Hu发布了新的文献求助30
27秒前
27秒前
31秒前
思源应助Hu采纳,获得30
35秒前
George完成签到,获得积分10
37秒前
40秒前
43秒前
45秒前
47秒前
48秒前
zhengxu发布了新的文献求助50
51秒前
英姑应助文艺的松鼠采纳,获得10
55秒前
爱笑的眼睛完成签到,获得积分10
58秒前
从容芮应助科研通管家采纳,获得10
58秒前
YifanWang应助科研通管家采纳,获得10
58秒前
Akim应助科研通管家采纳,获得10
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Dreamer.发布了新的文献求助10
1分钟前
任性白卉完成签到 ,获得积分10
1分钟前
1分钟前
桃花源的瓶起子完成签到 ,获得积分10
1分钟前
zhengxu发布了新的文献求助20
1分钟前
1分钟前
乐观海云完成签到 ,获得积分10
1分钟前
1分钟前
nav完成签到 ,获得积分10
1分钟前
香蕉秋柳发布了新的文献求助10
1分钟前
情怀应助香蕉秋柳采纳,获得10
1分钟前
orixero应助冷静新烟采纳,获得10
1分钟前
研友_ngk5zn发布了新的文献求助10
2分钟前
Vine完成签到,获得积分20
2分钟前
坚强的虔发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4249105
求助须知:如何正确求助?哪些是违规求助? 3782315
关于积分的说明 11873511
捐赠科研通 3434667
什么是DOI,文献DOI怎么找? 1884947
邀请新用户注册赠送积分活动 936594
科研通“疑难数据库(出版商)”最低求助积分说明 842498