An adapted LSTM-DRRNet approach for predicting floor acceleration response spectrum

加速度 反应谱 计算机科学 卷积(计算机科学) 残余物 概化理论 非线性系统 人工智能 算法 结构工程 工程类 人工神经网络 数学 量子力学 经典力学 统计 物理
作者
Jianze Wang,Yongqing Jiang,Qinyong Huang,Xingquan Guan,Kaoshan Dai
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:295: 116849-116849 被引量:2
标识
DOI:10.1016/j.engstruct.2023.116849
摘要

The floor response spectrum is an essential element in designing non-structural components (NSC) under earthquakes. However, most available approaches for floor response spectrum estimation involve complex modeling work, require intensive computational resources, and lack generalizability. To address these limitations, this paper proposes a novel deep-learning-based methodology to provide a generalized estimate of nonlinear floor response spectra, which is composed of a bidirectional convolutional long short-term memory network with an attention mechanism (ACN-BiLSTM) and a deep residual regression network (DRRNet). ACN-BiLSTM uses one-dimensional convolution to extract high-dimensional abstract features of ground motion spectrum in each period. The attention mechanism and multi-scale sliding time window are used to improve the network’s convergence speed and prediction accuracy. DRRNet uses deep one-dimensional convolution to build a residual shortcut connection, which delivers the proportional relationship between floor response spectrum at different heights. With the input of the ground motion acceleration spectrum and structural characteristics, the proposed method can estimate the nonlinear floor acceleration response spectrum on any floor of a building. To demonstrate its efficacy, the proposed approach is applied to a dataset that includes floor response spectra of 56 buildings subjected to 195 ground motions. The application results indicate that the proposed approach can effectively and reliably predict the nonlinear acceleration response spectrum with an accuracy of 97.29%. Such an efficient method is promising in advancing the seismic design of non-structural components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
户户得振发布了新的文献求助10
5秒前
concise完成签到 ,获得积分10
7秒前
土豆酱发布了新的文献求助10
9秒前
倪妮发布了新的文献求助10
9秒前
彦希完成签到 ,获得积分10
13秒前
Maxw完成签到,获得积分10
13秒前
14秒前
思源应助Hollen采纳,获得10
14秒前
彳亍完成签到,获得积分10
14秒前
王羊补牢完成签到,获得积分10
15秒前
17秒前
17秒前
l18830901880完成签到,获得积分10
19秒前
李俊枫发布了新的文献求助30
22秒前
王羊补牢发布了新的文献求助10
22秒前
22秒前
儒雅如松完成签到,获得积分10
22秒前
幸运花花完成签到,获得积分10
23秒前
jjx1005完成签到 ,获得积分10
23秒前
Maxw发布了新的文献求助10
27秒前
受伤芝麻发布了新的文献求助20
28秒前
28秒前
少华完成签到,获得积分10
30秒前
31秒前
耶?发布了新的文献求助10
32秒前
研友完成签到 ,获得积分10
33秒前
从容芮应助眼睛大的念桃采纳,获得50
35秒前
完美世界应助Monica采纳,获得10
35秒前
南宫古伦完成签到 ,获得积分10
38秒前
善学以致用应助哈哈哈采纳,获得10
38秒前
别忘了吃胶囊完成签到,获得积分10
39秒前
尊敬的夏槐完成签到,获得积分10
39秒前
vivian完成签到 ,获得积分0
39秒前
受伤芝麻完成签到,获得积分10
41秒前
41秒前
43秒前
受伤芝麻发布了新的文献求助10
44秒前
fdsdvczx完成签到 ,获得积分20
44秒前
45秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801363
求助须知:如何正确求助?哪些是违规求助? 3347034
关于积分的说明 10331558
捐赠科研通 3063311
什么是DOI,文献DOI怎么找? 1681497
邀请新用户注册赠送积分活动 807616
科研通“疑难数据库(出版商)”最低求助积分说明 763810