Memristor-based spiking neural network with online reinforcement learning

计算机科学 尖峰神经网络 记忆电阻器 强化学习 初始化 神经形态工程学 人工神经网络 人工智能 水准点(测量) Spike(软件开发) 机器学习 软件工程 大地测量学 地理 电气工程 程序设计语言 工程类
作者
Danila Vlasov,А. А. Миннеханов,Roman Rybka,Yury A. Davydov,Alexander Sboev,Alexey Serenko,Aleksandr I. Iliasov,В. А. Демин
出处
期刊:Neural Networks [Elsevier BV]
卷期号:166: 512-523
标识
DOI:10.1016/j.neunet.2023.07.031
摘要

Neural networks implemented in memristor-based hardware can provide fast and efficient in-memory computation, but traditional learning methods such as error back-propagation are hardly feasible in it. Spiking neural networks (SNNs) are highly promising in this regard, as their weights can be changed locally in a self-organized manner without the demand for high-precision changes calculated with the use of information almost from the entire network. This problem is rather relevant for solving control tasks with neural-network reinforcement learning methods, as those are highly sensitive to any source of stochasticity in a model initialization, training, or decision-making procedure. This paper presents an online reinforcement learning algorithm in which the change of connection weights is carried out after processing each environment state during interaction-with-environment data generation. Another novel feature of the algorithm is that it is applied to SNNs with memristor-based STDP-like learning rules. The plasticity functions are obtained from real memristors based on poly-p-xylylene and CoFeB-LiNbO3 nanocomposite, which were experimentally assembled and analyzed. The SNN is comprised of leaky integrate-and-fire neurons. Environmental states are encoded by the timings of input spikes, and the control action is decoded by the first spike. The proposed learning algorithm solves the Cart-Pole benchmark task successfully. This result could be the first step towards implementing a real-time agent learning procedure in a continuous-time environment that can be run on neuromorphic systems with memristive synapses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆的难敌完成签到,获得积分20
刚刚
星辰大海应助LEE采纳,获得10
刚刚
1秒前
1秒前
1秒前
mfy发布了新的文献求助10
2秒前
2秒前
石榴发布了新的文献求助10
2秒前
anbiii发布了新的文献求助10
2秒前
爆米花应助zzz采纳,获得10
3秒前
宇与鱼发布了新的文献求助10
3秒前
隐形曼青应助Tyj采纳,获得10
3秒前
3秒前
酷酷芷蕾发布了新的文献求助10
3秒前
西瓜完成签到,获得积分10
3秒前
3秒前
润润轩轩发布了新的文献求助10
4秒前
hhh发布了新的文献求助10
5秒前
ding应助欢喜的新竹采纳,获得10
5秒前
jinjiin发布了新的文献求助10
6秒前
6秒前
6秒前
mfy完成签到,获得积分10
7秒前
8秒前
8秒前
star发布了新的文献求助10
8秒前
甜甜宛海发布了新的文献求助10
9秒前
bb应助文件撤销了驳回
10秒前
David发布了新的文献求助10
11秒前
swy发布了新的文献求助10
11秒前
无花果应助Aaaaguo采纳,获得10
12秒前
shangshang发布了新的文献求助10
12秒前
JoJo完成签到,获得积分10
12秒前
14秒前
feifeiaym应助小杨采纳,获得50
14秒前
15秒前
zz完成签到,获得积分20
16秒前
Summer夏天完成签到,获得积分10
16秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813761
求助须知:如何正确求助?哪些是违规求助? 3358153
关于积分的说明 10392200
捐赠科研通 3075499
什么是DOI,文献DOI怎么找? 1689310
邀请新用户注册赠送积分活动 812665
科研通“疑难数据库(出版商)”最低求助积分说明 767350