亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Solid Electrolytes As Li-Ion Conducting Additive and Interfacial Stabilizer for High-Voltage Cathodes

电解质 阴极 阳极 材料科学 电化学 储能 化学工程 高压 氧化物 功率密度 电极 电压 化学 电气工程 功率(物理) 冶金 物理 物理化学 量子力学 工程类
作者
Jung Hyun Kim,Xinwei Jiao,Chan-Yeop Yu,Amanda K. Gibson,Neil J. Kidner,Eungje Lee,Seoung‐Bum Son
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (6): 1009-1009
标识
DOI:10.1149/ma2023-0161009mtgabs
摘要

Li-ion batteries (LIBs) have been a great facilitator to enable portable devices and electric vehicles (EVs) because of their high energy and power densities compared with other energy-storage devices. The high energy of LIBs is attributed to the high operating voltages of oxide-based cathodes (e.g., ~ 4 V vs.Li ) and wide electrochemical stability windows of organic liquid electrolytes (e.g., 1 – 4 V vs.Li ). In pursuit of extending energy density and lowering cost of LIBs further, R&D efforts have been devoted to finding the chemistries that can increase the cell operating voltages. However, increasing the voltages beyond the highest occupied molecular orbital (HOMO) of the electrolytes (c.a., ~ 4 V vs.Li ) leads to unwanted parasitic reactions at cathode-electrolyte interphase (CEI). In addition to the electrolyte oxidations at CEI, the reaction byproducts such as transition metal ions, HF, and CO 2 can migrate to anodes and degrade their solid-electrolyte interphase (SEI) layers. As a result, high-voltage LIBs suffer from rapid capacity fading, growth of cell impedance, and gas generation. To mitigate the issue, various approaches have been proposed such as artificial CEI layer on cathode, tuning chemical compositions of cathodes, coating graphite anodes, using electrolyte additives, and adopting functional binders for cathodes. However, there is no simple solution to resolve all the complex issues occurring in the high-voltage cells. Considering that such parasitic reactions originate from the CEI and propagate to the SEI of anodes, there is a dire need of multimodal strategies that can create synergistic effect on stabilizing the electrode-electrolyte interphases in cell-level. Our research team has been developing multi-strategy that can coherently improve the high-voltage stability of LIB cells. Among them, we will present our recent approach of using solid-electrolyte (SE) powders as Li-ion conducting additive and interfacial stabilizer for high-voltage cathodes. As the proof-of-concept, Li 6.7 La 3 Zr 1.7 Ta 0.3 O 12 (LLZT) SE was blended with Ni-rich Li(Ni 1-x Mn x/2 Co x/2 )O 2 (NMC) or LiNi 0.5 Mn 1.5 O 4 (LNMO) cathodes by relying on conventional electrode fabrication processes in LIB cells. This simple process offers advantages over the conventional coating methods in terms of manufacturing friendliness, energy saving, and cost effectiveness. Among various SE materials, garnet-type LLZT shows great promises based on its wide electrochemical stability window, good mechanical properties, and reasonable Li-ion conductivity (10 -3 – 10 -4 S/cm). First, the LLZT blended cathode significantly improved specific capacity and its retention during cycling at high voltages: e.g., 4.5 V vs.Li for Ni-rich NMC and 5.0 V vs.Li for LNMO spinel. Compared with the SE-free cathodes (baseline samples), the SE blended cathodes consistently delivered improved specific capacities, capacity retentions, and Coulombic efficiencies in full-cells made with graphite anodes. The improvement mechanism of the LLZT blended cathodes can be explained by two folds. First, LLZT contacts with cathodes (e.g., NMC or LNMO) and improves Li-ion transport properties of CEI layer, as evidenced by electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) analyses. Second, LLZT can scavenge moisture/proton in the liquid electrolytes and subsequently suppress the degradation of CEI and SEI layers during extended cycles, as evidenced by X-ray photoelectron spectroscopy (XPS). As a result, 5 wt% LLZO blended cathodes delivered a stable electrochemical performance even at the presence of 5000 ppm moisture (and thus HF) in an electrolyte. In contrast to the traditional surface coating methods, solid-electrolyte blending approach is cost-effective and manufacturing/environmentally friendly, and thereby can serve as a practical pathway for improving performances and stability of current battery cells for EV and small electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hello2001完成签到 ,获得积分10
5秒前
16秒前
东方天奇完成签到 ,获得积分10
19秒前
xiw完成签到,获得积分10
20秒前
21秒前
简单的沛蓝完成签到 ,获得积分10
26秒前
陶醉觅夏发布了新的文献求助10
27秒前
orixero应助hy采纳,获得10
41秒前
NexusExplorer应助科研通管家采纳,获得20
46秒前
汉堡包应助科研通管家采纳,获得10
46秒前
46秒前
lxyonline发布了新的文献求助10
48秒前
在水一方应助napnap采纳,获得10
50秒前
54秒前
59秒前
1分钟前
hy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
雪梅完成签到 ,获得积分10
1分钟前
1分钟前
ajiaxi发布了新的文献求助10
1分钟前
karina完成签到 ,获得积分10
1分钟前
1分钟前
jjdeng发布了新的文献求助30
1分钟前
pigpig发布了新的文献求助10
1分钟前
彭于晏应助yyyjx采纳,获得10
1分钟前
1分钟前
1分钟前
jjdeng完成签到,获得积分20
1分钟前
WL发布了新的文献求助10
1分钟前
一只小锦鲤完成签到,获得积分10
2分钟前
科研通AI2S应助陶醉觅夏采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ych62524发布了新的文献求助10
2分钟前
难过大神发布了新的文献求助10
2分钟前
pigpig完成签到,获得积分10
2分钟前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Yaws' Handbook of Antoine coefficients for vapor pressure 500
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Love and Friendship in the Western Tradition: From Plato to Postmodernity 500
行動データの計算論モデリング 強化学習モデルを例として 500
Johann Gottlieb Fichte: Die späten wissenschaftlichen Vorlesungen / IV,1: ›Transzendentale Logik I (1812)‹ 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2556525
求助须知:如何正确求助?哪些是违规求助? 2180311
关于积分的说明 5623585
捐赠科研通 1901665
什么是DOI,文献DOI怎么找? 949942
版权声明 565607
科研通“疑难数据库(出版商)”最低求助积分说明 504846