Joint two-stage convolutional neural networks for intracranial aneurysms detection on 3D TOF-MRA

假阳性悖论 计算机科学 接收机工作特性 卷积神经网络 人工智能 假阳性率 分割 医学诊断 放射科 稳健性(进化) 阶段(地层学) 模式识别(心理学) 医学 机器学习 生物 基因 古生物学 化学 生物化学
作者
Yuxi Zhou,Yifeng Yang,Ting Fang,Shouqiang Jia,Shengdong Nie,Xiaodan Ye
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185001-185001 被引量:4
标识
DOI:10.1088/1361-6560/acf2e6
摘要

Objective. This study aims to develop a three-dimensional convolutional neural network utilizing computer-aided diagnostic technology to facilitate the detection of intracranial aneurysms and automatically assess their location and extent, thereby enhancing the efficiency of radiologists, and streamlining clinical workflows.Approach. A retrospective study was conducted, proposing a joint segmentation and classification network (JSCD-Net) that employs 3D time-of-flight magnetic resonance angiography images for preliminary detection of aneurysms and the minimization of false positives. Specifically, the U-Net++ network was utilized for pre-detection of aneurysms. This was followed by the creation of a multi-path network, co-trained with U-Net++ to correct the results of the first stage to further reduce the rate of false positives. Model effectiveness and robustness were evaluated using sensitivity and false positive analyses on internal and external datasets. A cross-validated free-response receiver operating characteristic curve was also plotted.Main results. JSCD-Net demonstrated a sensitivity of 91.2% (31 of 34; 95% CI: 77.0, 97.0) with an average of 3.55 false positives per scan on the internal test set. For the external test set, it identified 97.2% (70 of 72; 95% CI: 90.4, 99.2) of aneurysms with an average of 2.7 false positives per scan.Significance. When compared with the existing studies, the proposed model shows high sensitivity in detecting intracranial aneurysms with a reasonable number of false positives per case. This result emphasizes the model's potential as a valuable tool in aiding clinical diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助121采纳,获得20
2秒前
大个应助寂寞的小虾米采纳,获得30
2秒前
2秒前
3秒前
斯文败类应助神勇的定帮采纳,获得10
4秒前
4秒前
vi6bjf发布了新的文献求助10
5秒前
CY发布了新的文献求助10
5秒前
大个应助xx采纳,获得10
6秒前
蕙心完成签到 ,获得积分10
7秒前
轩辕沛柔发布了新的文献求助10
8秒前
9秒前
爱撒娇的若山完成签到,获得积分10
10秒前
忧虑的靖巧完成签到 ,获得积分10
12秒前
王子杰发布了新的文献求助10
13秒前
Lucas应助书晨采纳,获得10
13秒前
111发布了新的文献求助10
14秒前
天天快乐应助光亮之双采纳,获得10
15秒前
sdq完成签到,获得积分10
15秒前
15秒前
打打应助晨曦采纳,获得10
16秒前
一下打死七个完成签到,获得积分10
16秒前
读不完的文献啊完成签到,获得积分10
18秒前
思源应助一定发文章采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
小马甲应助阳光铭媚采纳,获得10
21秒前
21秒前
21秒前
CY完成签到,获得积分10
22秒前
22秒前
23秒前
jiangjiang完成签到,获得积分10
24秒前
在水一方应助KKK采纳,获得10
24秒前
25秒前
李智轩完成签到,获得积分10
26秒前
真实的珠发布了新的文献求助10
26秒前
27秒前
哈哈发布了新的文献求助10
28秒前
隐形曼青应助vi6bjf采纳,获得10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247941
求助须知:如何正确求助?哪些是违规求助? 3780970
关于积分的说明 11871154
捐赠科研通 3433989
什么是DOI,文献DOI怎么找? 1884725
邀请新用户注册赠送积分活动 936340
科研通“疑难数据库(出版商)”最低求助积分说明 842216