Mechanisms and modelling approaches for excessive rainfall stress on cereals: Waterlogging, submergence, lodging, pests and diseases

内涝(考古学) 气候变化 环境科学 积水 过程(计算) 极端天气 种植 计算机科学 农业工程 生态学 农业 排水 生物 工程类 湿地 操作系统
作者
Yean‐Uk Kim,Heidi Webber,S.G.K. Adiku,Rogério de Souza Nóia Júnior,Jean‐Charles Deswarte,Senthold Asseng,Frank Ewert
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:344: 109819-109819 被引量:19
标识
DOI:10.1016/j.agrformet.2023.109819
摘要

As the intensity and frequency of extreme weather events are projected to increase under climate change, assessing their impact on cropping systems and exploring feasible adaptation options is increasingly critical. Process-based crop models (PBCMs), which are widely used in climate change impact assessments, have improved in simulating the impacts of major extreme weather events such as heatwaves and droughts but still fail to reproduce low crop yields under wet conditions. Here, we provide an overview of yield-loss mechanisms of excessive rainfall in cereals (i.e., waterlogging, submergence, lodging, pests and diseases) and associated modelling approaches with the aim of guiding PBCM improvements. Some PBCMs simulate waterlogging and ponding environments, but few capture aeration stresses on crop growth. Lodging is often neglected by PBCMs; however, some stand-alone mechanistic lodging models exist, which can potentially be incorporated into PBCMs. Some frameworks link process-based epidemic and crop models with consideration of different damage mechanisms. However, the lack of data to calibrate and evaluate these model functions limit the use of such frameworks. In order to generate data for model improvement and close knowledge gaps, targeted experiments on damage mechanisms of waterlogging, submergence, pests and diseases are required. However, consideration of all damage mechanisms in PBCM may result in excessively complex models with a large number of parameters, increasing model uncertainty. Modular frameworks could assist in selecting necessary mechanisms and lead to appropriate model structures and complexity that fit a specific research question. Lastly, there are potential synergies between PBCMs, statistical models, and remotely sensed data that could improve the prediction accuracy and understanding of current PBCMs' shortcomings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a846204516完成签到,获得积分10
刚刚
酸奶完成签到,获得积分10
刚刚
刚刚
悦耳盼望完成签到,获得积分10
1秒前
南雪既白发布了新的文献求助10
1秒前
kongkong发布了新的文献求助10
1秒前
UNIQUE发布了新的文献求助10
1秒前
烟花应助欣慰的星月采纳,获得10
1秒前
2秒前
负蕲发布了新的文献求助10
2秒前
sisi发布了新的文献求助10
2秒前
3秒前
科赫额发布了新的文献求助30
3秒前
Hilda007发布了新的文献求助10
3秒前
林新宇完成签到,获得积分10
3秒前
3秒前
CC发布了新的文献求助10
4秒前
4秒前
是木易呀发布了新的文献求助30
4秒前
Ava应助橘子采纳,获得10
4秒前
4秒前
CodeCraft应助富贵采纳,获得10
4秒前
bkagyin应助N的3次方采纳,获得10
4秒前
orixero应助12345采纳,获得10
5秒前
YZP发布了新的文献求助10
5秒前
shhyyds发布了新的文献求助20
6秒前
IaiJY完成签到,获得积分10
7秒前
执着的莆完成签到,获得积分10
7秒前
7秒前
wergou发布了新的文献求助10
7秒前
7秒前
柴子发布了新的文献求助10
8秒前
天天快乐应助壮观的凝阳采纳,获得10
8秒前
莯瑶完成签到,获得积分10
8秒前
完美世界应助a846204516采纳,获得10
8秒前
顺子快乐完成签到,获得积分10
8秒前
9秒前
9秒前
奋斗的山水完成签到,获得积分20
10秒前
ssssjmjy发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088254
求助须知:如何正确求助?哪些是违规求助? 4303219
关于积分的说明 13410735
捐赠科研通 4129025
什么是DOI,文献DOI怎么找? 2261095
邀请新用户注册赠送积分活动 1265234
关于科研通互助平台的介绍 1199686