已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MOD-YOLO: Rethinking the YOLO architecture at the level of feature information and applying it to crack detection

可分离空间 计算机科学 频道(广播) 棱锥(几何) 卷积(计算机科学) 维数(图论) 特征(语言学) 维数之咒 领域(数学) 财产(哲学) 降维 联营 算法 人工智能 数据挖掘 数学 人工神经网络 电信 数学分析 语言学 哲学 几何学 认识论 纯数学
作者
Peng Su,Huizi Han,Mei Liu,Tao Yang,Shijie Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121346-121346 被引量:53
标识
DOI:10.1016/j.eswa.2023.121346
摘要

Civil infrastructure plays an important role in daily life. If cracks are not found in time, they may cause immeasurable losses to people and property. Therefore, timely and accurate detection and localization of cracks is of great significance. Considering the possible loss of channel information and the lack of receptive field in the previous You Only Look Once (YOLO) series of algorithms, we design a Maintaining the Original Dimension-YOLO (MOD-YOLO) algorithm and apply it to crack detection in civil infrastructure. All the improved schemes in the algorithm are plug-and-play. First, we propose Maintaining the Original information-Deeply Separable Convolution (MODSConv), which solves the problem that we cannot interact with information between channels in the original feature layer (as seen in classical deeply separable convolutions). Second, we propose Global Receptive Field-Space Pooling Pyramid-Fast to obtain global perspective information and mitigate the impact of different scales. Third, Distinctive and Average Features-Coordinate Attention (DAF-CA) is proposed. This not only deals with the reference average information but also considers salient information. With this, we can find and enhance key information more accurately. In addition, we design Maintaining the Original information-Deeply Separable Layer (MODSLayer), which protects the rich information between channels in a way that does not reduce the dimensionality of the channel. At the same time, MODSLayer builds the backbone and neck of the network. The network is named Maintaining the Original information-Deeply Separable Network(MODSNet). Finally, Maintaining the Original Dimension Light-Head is designed for channel non-dimensionality reduction. It maintains as much feature layer information as possible before prediction under the premise of being as lightweight as possible, which significantly improves detection accuracy and detection speed. The experimental results show that our algorithm improves the accuracy by 27.5% to 91.1% on the crack dataset compared to the YOLOX algorithm with the crack detection time basically the same as the YOLOX algorithm, and with the parameter amount reduced by 19.7% and the computational complexity reduced by 35.9%. Meanwhile, experiments on COCO2017, VOC2007 and other datasets verify its good generalizability. The whole vehicle deployment scheme for crack detection is proposed and used to implement the algorithm to detect cracks while the vehicle is moving, and the accompanying experiments prove that our algorithm is able to complete the task of detecting cracks while the vehicle is moving very well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
evvj完成签到 ,获得积分10
3秒前
科目三应助ClancyJacky采纳,获得10
9秒前
guo完成签到 ,获得积分10
13秒前
hxq完成签到 ,获得积分10
21秒前
填充物完成签到 ,获得积分10
22秒前
焱焱不忘完成签到 ,获得积分10
24秒前
yuhui完成签到 ,获得积分10
28秒前
霸气鞯发布了新的文献求助10
31秒前
33秒前
健康的大门完成签到,获得积分10
34秒前
zhenzheng完成签到 ,获得积分10
34秒前
谢朝邦完成签到 ,获得积分10
34秒前
MF发布了新的文献求助30
36秒前
kekeke完成签到,获得积分10
43秒前
hh关注了科研通微信公众号
44秒前
充电宝应助滴答采纳,获得30
44秒前
zho应助霸气鞯采纳,获得10
45秒前
kekeke发布了新的文献求助10
47秒前
memore完成签到 ,获得积分10
48秒前
49秒前
舒窈完成签到 ,获得积分10
49秒前
Zz完成签到 ,获得积分10
52秒前
颜南风完成签到 ,获得积分10
52秒前
谦让的博完成签到,获得积分10
53秒前
DreamRunner0410完成签到 ,获得积分10
53秒前
zzzq完成签到 ,获得积分10
55秒前
ClancyJacky发布了新的文献求助10
56秒前
多年以后完成签到,获得积分10
1分钟前
999完成签到 ,获得积分10
1分钟前
zzz完成签到 ,获得积分10
1分钟前
丘比特应助张emo采纳,获得10
1分钟前
1分钟前
郑绒绒完成签到 ,获得积分10
1分钟前
1分钟前
小马甲应助LeezZZZ采纳,获得10
1分钟前
小文cremen完成签到 ,获得积分10
1分钟前
zho应助科研通管家采纳,获得10
1分钟前
zho应助科研通管家采纳,获得10
1分钟前
Groot完成签到,获得积分10
1分钟前
hh发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324680
关于积分的说明 10219283
捐赠科研通 3039685
什么是DOI,文献DOI怎么找? 1668358
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467