Machine learning algorithms for prediction of ventilator associated pneumonia in traumatic brain injury patients from the MIMIC-III database

医学 队列 接收机工作特性 阿达布思 机械通风 随机森林 机器学习 曲线下面积 入射(几何) 创伤性脑损伤 回顾性队列研究 曲线下面积 算法 内科学 支持向量机 计算机科学 精神科 物理 光学 药代动力学
作者
Ruoran Wang,Linrui Cai,Yan Liu,Jing Zhang,Xiaofeng Ou,Jianguo Xu
出处
期刊:Heart & Lung [Elsevier BV]
卷期号:62: 225-232 被引量:7
标识
DOI:10.1016/j.hrtlng.2023.08.002
摘要

Ventilator associated pneumonia (VAP) is a common complication and associated with poor prognosis of traumatic brain injury (TBI) patients.This study was conducted to explore the predictive performance of different machine-learning algorithms for VAP in TBI patients.TBI patients receiving mechanical ventilation more than 48 hours from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were eligible for the study. The VAP was confirmed based on the ICD-9 code. Included patients were separated to the training cohort and the validation cohort with a ratio of 7:3. Predictive models based on different machine learning algorithms were developed using 5-fold cross validation in the training cohort and then verified in the validation cohort by evaluating the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy and F score.786 TBI patients from the MIMIC-III were finally included with the VAP incidence of 44.0%. The random forest performed the best on predicting VAP in the training cohort with a AUC of 1.000. The XGBoost and AdaBoost were ranked the second and the third with a AUC of 0.915 and 0.789 in the training cohort. While the AdaBoost performed the best on predicting VAP in the validation cohort with a AUC of 0.706. The XGBoost and random forest were ranked the second and the third with the AUC of 0.685 and 0.683 in the validation cohort. Generally, the random forest and XGBoost were likely to be over-fitting while the AdaBoost was relatively stable in predicting the VAP.The AdaBoost performed well and stably on predicting the VAP in TBI patients. Developing programs using AdaBoost in portable electronic devices may effectively assist physicians in assessing the risk of VAP in TBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈欢发布了新的文献求助10
1秒前
失眠醉易应助自然剑采纳,获得40
1秒前
飓风卡塔琳娜完成签到,获得积分10
2秒前
科研通AI5应助音玥采纳,获得10
3秒前
3秒前
完美世界应助驭剑士采纳,获得10
3秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
不倦应助科研通管家采纳,获得10
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
ZhouYW应助科研通管家采纳,获得10
4秒前
Summertrain应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
不倦应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
不倦应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Summertrain应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得30
5秒前
5秒前
6秒前
xiaolin应助Winnie采纳,获得10
8秒前
9秒前
哈哈欢完成签到,获得积分20
9秒前
YC完成签到,获得积分10
10秒前
12秒前
12秒前
web123完成签到,获得积分10
14秒前
驭剑士发布了新的文献求助10
15秒前
yyxhahaha完成签到,获得积分10
15秒前
amy关注了科研通微信公众号
16秒前
小二郎应助wzm采纳,获得10
17秒前
猪猪hero发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797534
求助须知:如何正确求助?哪些是违规求助? 3342906
关于积分的说明 10313987
捐赠科研通 3059618
什么是DOI,文献DOI怎么找? 1679037
邀请新用户注册赠送积分活动 806288
科研通“疑难数据库(出版商)”最低求助积分说明 763078