Merging public opinion information and stock numerical data for stock trend prediction based on deep learning

库存(枪支) 股票市场 计算机科学 文字嵌入 中国大陆 情绪分析 计量经济学 舆论 嵌入 金融经济学 人工智能 经济 中国 政治学 工程类 法学 政治 生物 古生物学 机械工程
作者
geng Lv,Jianjiang Cui
标识
DOI:10.1117/12.2691661
摘要

Unlike other stock markets participants, the participants in China mainland are composed of individual investors, which account for 82% of the trading volume of the stock market. The decision-making basis of individual investors is mainly public opinion and recent stock prices. Therefore, the public opinion on professional stock social sites has an important impact on the decision of individual investors, which in turn affects the trend of the stock market. However, the previous stock market forecasting methods mostly ignored the influence of public opinion information on the market. For this reason, this paper proposes a novel framework to predict the stock trend by using both public opinion and stock numerical data. The original contributions of this paper include stock commentary word embedding model based on the stock comment text data crawled from https://xueqiu.com through two-stage training and LSTM-CNN layered model based on the improved self-attention mechanism. Two main experiments are conducted: the first experiment extract stock commentary word embedding, and the second experiment forecasts the stock price trends of Shanghai and Shenzhen A-share market. Results show that: 1)LSTM-CNN layered model is better than previous methods; 2)The combination of public opinion information and numerical data can improve the performance of the model; 3)Stock commentary word embedding model is better than pre-training word embedding model; 4) The longer the data span, the better the stock forecasting model will perform

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Robot完成签到 ,获得积分10
2秒前
深年发布了新的文献求助10
4秒前
迷失的杰克完成签到 ,获得积分10
5秒前
8秒前
阔达素发布了新的文献求助10
8秒前
Lemonade完成签到,获得积分10
8秒前
Robot关注了科研通微信公众号
11秒前
彭于晏应助cokk采纳,获得10
11秒前
李健应助娇气的火车采纳,获得10
11秒前
景代丝完成签到,获得积分10
14秒前
传奇3应助执着中道采纳,获得10
14秒前
Iridescent发布了新的文献求助10
15秒前
15秒前
醋溜爆肚儿完成签到,获得积分10
20秒前
lena发布了新的文献求助10
20秒前
田様应助科研通管家采纳,获得10
21秒前
宅多点应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
雨姐科研应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
机智的雁荷完成签到 ,获得积分10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
雨姐科研应助科研通管家采纳,获得10
21秒前
21秒前
雨姐科研应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
yyzhou应助科研通管家采纳,获得10
22秒前
雨姐科研应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560339
求助须知:如何正确求助?哪些是违规求助? 4645494
关于积分的说明 14675277
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915