Visualizing machine learning-based predictions of postpartum depression risk for lay audiences

介绍(产科) 感知 风险感知 结果(博弈论) 心理学 医学教育 应用心理学 医学 计算机科学 家庭医学 数学 放射科 数理经济学 神经科学
作者
Pooja Desai,Sarah Harkins,Saanjaana Rahman,Shiveen Kumar,Alison Hermann,Rochelle Joly,Yiye Zhang,Jyotishman Pathak,Jessica Kim,Deborah D’Angelo,Natalie C. Benda,Meghan Reading Turchioe
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (2): 289-297 被引量:3
标识
DOI:10.1093/jamia/ocad198
摘要

Abstract Objectives To determine if different formats for conveying machine learning (ML)-derived postpartum depression risks impact patient classification of recommended actions (primary outcome) and intention to seek care, perceived risk, trust, and preferences (secondary outcomes). Materials and methods We recruited English-speaking females of childbearing age (18-45 years) using an online survey platform. We created 2 exposure variables (presentation format and risk severity), each with 4 levels, manipulated within-subject. Presentation formats consisted of text only, numeric only, gradient number line, and segmented number line. For each format viewed, participants answered questions regarding each outcome. Results Five hundred four participants (mean age 31 years) completed the survey. For the risk classification question, performance was high (93%) with no significant differences between presentation formats. There were main effects of risk level (all P < .001) such that participants perceived higher risk, were more likely to agree to treatment, and more trusting in their obstetrics team as the risk level increased, but we found inconsistencies in which presentation format corresponded to the highest perceived risk, trust, or behavioral intention. The gradient number line was the most preferred format (43%). Discussion and conclusion All formats resulted high accuracy related to the classification outcome (primary), but there were nuanced differences in risk perceptions, behavioral intentions, and trust. Investigators should choose health data visualizations based on the primary goal they want lay audiences to accomplish with the ML risk score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nancy发布了新的文献求助50
2秒前
5秒前
深情的起眸完成签到,获得积分10
8秒前
wyx完成签到,获得积分10
9秒前
11秒前
wyx发布了新的文献求助30
16秒前
SciGPT应助学术蝗虫采纳,获得10
16秒前
jks完成签到 ,获得积分10
20秒前
Steven发布了新的文献求助10
28秒前
30秒前
传奇3应助wyx采纳,获得10
35秒前
学术蝗虫发布了新的文献求助10
36秒前
36秒前
38秒前
杨y123发布了新的文献求助10
42秒前
dsdjsicj发布了新的文献求助10
43秒前
上官若男应助内向绿竹采纳,获得10
43秒前
纤尘cc完成签到,获得积分10
43秒前
44秒前
tzj发布了新的文献求助10
44秒前
苹果果汁发布了新的文献求助10
49秒前
杨y123完成签到,获得积分10
52秒前
科研通AI5应助纤尘cc采纳,获得10
52秒前
53秒前
汉堡包应助萨芬撒采纳,获得10
54秒前
56秒前
学术蝗虫完成签到,获得积分10
57秒前
在封我就急眼啦完成签到,获得积分10
1分钟前
南星完成签到 ,获得积分10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385