Deep Learning–Enabled Diagnosis of Liver Adenocarcinoma

接收机工作特性 活检 医学 放射科 转移 数字化病理学 腺癌 普通外科 病理 内科学 癌症
作者
Thomas Albrecht,Annik Rossberg,Jana D. Albrecht,Jan P. Nicolay,Beate K. Straub,Tiemo Sven Gerber,Michael von Albrecht,Fritz Brinkmann,Alphonse Charbel,Constantin Schwab,Johannes Schreck,Alexander Brobeil,Christa Flechtenmacher,Moritz von Winterfeld,Bruno Köhler,Christoph Springfeld,Arianeb Mehrabi,Stephan Singer,Monika Vogel,Olaf Neumann
出处
期刊:Gastroenterology [Elsevier]
卷期号:165 (5): 1262-1275 被引量:12
标识
DOI:10.1053/j.gastro.2023.07.026
摘要

Diagnosis of adenocarcinoma in the liver is a frequent scenario in routine pathology and has a critical impact on clinical decision making. However, rendering a correct diagnosis can be challenging, and often requires the integration of clinical, radiologic, and immunohistochemical information. We present a deep learning model (HEPNET) to distinguish intrahepatic cholangiocarcinoma from colorectal liver metastasis, as the most frequent primary and secondary forms of liver adenocarcinoma, with clinical grade accuracy using H&E-stained whole-slide images.HEPNET was trained on 714,589 image tiles from 456 patients who were randomly selected in a stratified manner from a pool of 571 patients who underwent surgical resection or biopsy at Heidelberg University Hospital. Model performance was evaluated on a hold-out internal test set comprising 115 patients and externally validated on 159 patients recruited at Mainz University Hospital.On the hold-out internal test set, HEPNET achieved an area under the receiver operating characteristic curve of 0.994 (95% CI, 0.989-1.000) and an accuracy of 96.522% (95% CI, 94.521%-98.694%) at the patient level. Validation on the external test set yielded an area under the receiver operating characteristic curve of 0.997 (95% CI, 0.995-1.000), corresponding to an accuracy of 98.113% (95% CI, 96.907%-100.000%). HEPNET surpassed the performance of 6 pathology experts with different levels of experience in a reader study of 50 patients (P = .0005), boosted the performance of resident pathologists to the level of senior pathologists, and reduced potential downstream analyses.We provided a ready-to-use tool with clinical grade performance that may facilitate routine pathology by rendering a definitive diagnosis and guiding ancillary testing. The incorporation of HEPNET into pathology laboratories may optimize the diagnostic workflow, complemented by test-related labor and cost savings.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
周一完成签到,获得积分10
1秒前
我是老大应助昵称采纳,获得10
3秒前
科研通AI2S应助22222采纳,获得10
6秒前
Irene完成签到,获得积分10
8秒前
123456冬瓜发布了新的文献求助10
14秒前
idannn完成签到,获得积分10
15秒前
18秒前
19秒前
周一发布了新的文献求助10
19秒前
雪白豁完成签到 ,获得积分10
20秒前
20秒前
22秒前
Violet发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
轨迹应助Kate采纳,获得20
26秒前
受伤天真发布了新的文献求助30
27秒前
30秒前
22222发布了新的文献求助10
30秒前
Mr.Ren发布了新的文献求助10
30秒前
rr海完成签到,获得积分10
32秒前
yangmanjuan完成签到,获得积分10
32秒前
科研通AI6.1应助Violet采纳,获得10
33秒前
111应助Wang采纳,获得10
33秒前
佳慧发布了新的文献求助10
34秒前
幸福幸福完成签到 ,获得积分10
35秒前
自由的蒜苗完成签到,获得积分10
38秒前
幸福完成签到 ,获得积分10
46秒前
自然的谷云完成签到,获得积分10
47秒前
洋洋完成签到,获得积分10
47秒前
47秒前
47秒前
yuanling完成签到 ,获得积分10
48秒前
50秒前
ZJFL完成签到,获得积分10
54秒前
你姜子完成签到,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5838185
求助须知:如何正确求助?哪些是违规求助? 6130295
关于积分的说明 15600666
捐赠科研通 4956370
什么是DOI,文献DOI怎么找? 2671576
邀请新用户注册赠送积分活动 1616754
关于科研通互助平台的介绍 1571871