Using a dual-stream attention neural network to characterize mild cognitive impairment based on retinal images

计算机科学 人工智能 痴呆 认知 模式识别(心理学) 卷积神经网络 医学 心理学 神经科学 疾病 病理
作者
He-Bei Gao,Shuai-Ye Zhao,Zheng Gu,Xinmin Wang,Runyi Zhao,Zhigeng Pan,Hong Li,Fan Lü,Meixiao Shen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107411-107411 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107411
摘要

Mild cognitive impairment (MCI) is a critical transitional stage between normal cognition and dementia, for which early detection is crucial for timely intervention. Retinal imaging has been shown as a promising potential biomarker for MCI. This study aimed to develop a dual-stream attention neural network to classify individuals with MCI based on multi-modal retinal images. Our approach incorporated a cross-modality fusion technique, a variable scale dense residual model, and a multi-classifier mechanism within the dual-stream network. The model utilized a residual module to extract image features and employed a multi-level feature aggregation method to capture complex context information. Self-attention and cross-attention modules were utilized at each convolutional layer to fuse features from optical coherence tomography (OCT) and fundus modalities, resulting in multiple output losses. The neural network was applied to classify individuals with MCI, Alzheimer's disease, and control participants with normal cognition. Through fine-tuning the pre-trained model, we classified community-dwelling participants into two groups based on cognitive impairment test scores. To identify retinal imaging biomarkers associated with accurate prediction, we used the Gradient-weighted Class Activation Mapping technique. The proposed method achieved high precision rates of 84.96% and 80.90% in classifying MCI and positive test scores for cognitive impairment, respectively. Notably, changes in the optic nerve head on fundus photographs or OCT images among patients with MCI were not used to discriminate patients from the control group. These findings demonstrate the potential of our approach in identifying individuals with MCI and emphasize the significance of retinal imaging for early detection of cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bu完成签到,获得积分10
刚刚
小呆完成签到 ,获得积分10
刚刚
Lshyong完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
小菜一碟2021完成签到,获得积分10
2秒前
少冬瓜发布了新的文献求助10
2秒前
ding应助神勇老虎采纳,获得10
2秒前
风清扬发布了新的文献求助10
3秒前
谷粱风华发布了新的文献求助50
3秒前
无敌于世1发布了新的文献求助10
3秒前
可爱的函函应助废柴采纳,获得10
3秒前
4秒前
Lucas应助Mia采纳,获得10
4秒前
5秒前
李健的小迷弟应助Wooooo采纳,获得10
5秒前
5秒前
赫贞发布了新的文献求助10
5秒前
6秒前
孙宁宁关注了科研通微信公众号
6秒前
Hayat应助心态zero采纳,获得30
6秒前
6秒前
6秒前
111发布了新的文献求助10
6秒前
充电宝应助XUEWENQIN采纳,获得10
6秒前
SC完成签到,获得积分10
6秒前
hhhh发布了新的文献求助10
6秒前
SMART完成签到,获得积分10
6秒前
zybbb发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI5应助狂野的老黑采纳,获得30
8秒前
8秒前
执着寇完成签到,获得积分10
8秒前
Sissi完成签到,获得积分10
8秒前
逐鹿呦呦完成签到,获得积分10
8秒前
神勇老虎完成签到,获得积分10
8秒前
8秒前
Loik完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097923
求助须知:如何正确求助?哪些是违规求助? 4310320
关于积分的说明 13429925
捐赠科研通 4137692
什么是DOI,文献DOI怎么找? 2266852
邀请新用户注册赠送积分活动 1269966
关于科研通互助平台的介绍 1206237