Using a dual-stream attention neural network to characterize mild cognitive impairment based on retinal images

计算机科学 人工智能 痴呆 认知 模式识别(心理学) 卷积神经网络 医学 心理学 神经科学 疾病 病理
作者
He-Bei Gao,Shuai-Ye Zhao,Zheng Gu,Xinmin Wang,Runyi Zhao,Zhigeng Pan,Hong Li,Fan Lü,Meixiao Shen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107411-107411 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107411
摘要

Mild cognitive impairment (MCI) is a critical transitional stage between normal cognition and dementia, for which early detection is crucial for timely intervention. Retinal imaging has been shown as a promising potential biomarker for MCI. This study aimed to develop a dual-stream attention neural network to classify individuals with MCI based on multi-modal retinal images. Our approach incorporated a cross-modality fusion technique, a variable scale dense residual model, and a multi-classifier mechanism within the dual-stream network. The model utilized a residual module to extract image features and employed a multi-level feature aggregation method to capture complex context information. Self-attention and cross-attention modules were utilized at each convolutional layer to fuse features from optical coherence tomography (OCT) and fundus modalities, resulting in multiple output losses. The neural network was applied to classify individuals with MCI, Alzheimer's disease, and control participants with normal cognition. Through fine-tuning the pre-trained model, we classified community-dwelling participants into two groups based on cognitive impairment test scores. To identify retinal imaging biomarkers associated with accurate prediction, we used the Gradient-weighted Class Activation Mapping technique. The proposed method achieved high precision rates of 84.96% and 80.90% in classifying MCI and positive test scores for cognitive impairment, respectively. Notably, changes in the optic nerve head on fundus photographs or OCT images among patients with MCI were not used to discriminate patients from the control group. These findings demonstrate the potential of our approach in identifying individuals with MCI and emphasize the significance of retinal imaging for early detection of cognitive impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emnjkl完成签到,获得积分20
3秒前
冷傲雍完成签到,获得积分20
3秒前
芭娜55完成签到 ,获得积分10
7秒前
8秒前
9秒前
热心的百川完成签到 ,获得积分20
11秒前
丰富又亦完成签到,获得积分10
13秒前
Bblythe完成签到 ,获得积分10
13秒前
15秒前
Akim应助奔波儿灞采纳,获得10
16秒前
NexusExplorer应助硕shuo采纳,获得10
17秒前
AA发布了新的文献求助10
19秒前
july完成签到 ,获得积分10
20秒前
22秒前
丰富又亦发布了新的文献求助10
22秒前
奔波儿灞完成签到,获得积分20
25秒前
28秒前
lant0ng完成签到 ,获得积分10
28秒前
GH发布了新的文献求助10
33秒前
33秒前
泡泡完成签到 ,获得积分10
35秒前
pluto应助木木三采纳,获得20
35秒前
六六完成签到 ,获得积分10
36秒前
37秒前
苏苏苏发布了新的文献求助10
38秒前
谨慎的擎宇完成签到,获得积分10
41秒前
42秒前
43秒前
晏子完成签到,获得积分10
43秒前
河堤完成签到,获得积分10
45秒前
远江丠发布了新的文献求助10
47秒前
陶军辉完成签到 ,获得积分10
47秒前
科目三应助meng采纳,获得10
48秒前
快乐的小央完成签到,获得积分10
52秒前
xiaozheng完成签到,获得积分10
53秒前
夜已深完成签到,获得积分10
56秒前
1111111111111完成签到,获得积分10
57秒前
QiWei完成签到 ,获得积分10
59秒前
Yi发布了新的文献求助10
59秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921