Ultrafast Fabrication of Large‐Area Colloidal Crystal Micropatterns via Self‐Assembly and Transfer Printing

材料科学 纳米技术 制作 表面张力 纳米颗粒 自组装 单层 微图形化 胶体晶体 胶体 化学工程 替代医学 病理 工程类 物理 医学 量子力学
作者
Xuan Li,Lei Chen,Yuan Ma,Ding Weng,Laurent Li,Lele Song,Xuanhe Zhang,Guoxu Yu,Jiadao Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (45) 被引量:41
标识
DOI:10.1002/adfm.202205462
摘要

Abstract Colloidal crystals have brought the promise of revolution to modern engineering, yet commonly used fabrication technologies are still limited by the small preparation area, time‐consuming process, and dependence on sophisticated equipment. Here, a surface tension gradient‐driven self‐assembly strategy is proposed for the ultrafast fabrication of large‐area colloidal crystals. The hydrogel loaded with sodium dodecyl sulfate is devised to construct a stable and continuous liquid‐air interfacial tension gradient, and the resulting Marangoni effect can drive the micro‐nano particles to instantaneously form (within several seconds) highly ordered colloidal crystals. Benefiting from the long range of surface tension gradients, the fabrication area of colloidal crystal films is demonstrated to exceed an astonishing 1000 cm 2 without compromising their quality, showing great potential in scale‐up manufacture. Moreover, particles of a wide variety of sizes, materials, and functionalities can form close‐packed self‐assembly monolayers and be transferred to various substrates without damage, exhibiting great versatility. Inspired by ink microprinting, an ultrafast nanoparticle transfer printing method is further proposed to convert the close‐packed nanoparticle monolayers into large‐area conformal micropatterns with single‐nanoparticle resolution. The great potential of nanoparticle micropatterns is demonstrated in flexible micro‐electronics/skin electronics. This user‐friendly, efficient self‐assembly, and micropatterning strategy provide promising opportunities for academic and real industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助孟冬采纳,获得10
1秒前
2秒前
吴学仕完成签到,获得积分10
3秒前
3秒前
4秒前
小六九发布了新的文献求助10
5秒前
7秒前
jin发布了新的文献求助10
8秒前
勤劳发布了新的文献求助10
8秒前
小潘完成签到,获得积分10
10秒前
华仔应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
malele完成签到 ,获得积分10
12秒前
12秒前
12秒前
研友_n2JR4n发布了新的文献求助60
12秒前
h_hellow完成签到,获得积分10
17秒前
20秒前
传奇3应助meng采纳,获得10
20秒前
CHEN完成签到,获得积分10
21秒前
冷艳的小懒虫完成签到 ,获得积分10
24秒前
善学以致用应助吐司采纳,获得10
24秒前
27秒前
科研通AI5应助小居很哇塞采纳,获得10
28秒前
30秒前
研友_n2JR4n完成签到,获得积分10
30秒前
科研通AI5应助勤劳采纳,获得30
32秒前
陈亮发布了新的文献求助20
32秒前
hyjhhy完成签到,获得积分10
33秒前
33秒前
Moihan完成签到,获得积分10
33秒前
ttc完成签到,获得积分10
33秒前
34秒前
35秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844610
求助须知:如何正确求助?哪些是违规求助? 3387017
关于积分的说明 10547192
捐赠科研通 3107611
什么是DOI,文献DOI怎么找? 1711877
邀请新用户注册赠送积分活动 824223
科研通“疑难数据库(出版商)”最低求助积分说明 774638